Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 758-764    DOI: 10.11901/1005.3093.2016.444
  研究论文 本期目录 | 过刊浏览 |
碳纳米管/炭黑协同效应对天然橡胶/顺丁橡胶复合材料性能的影响
高江姗, 何燕(), 徐瑾, 郭昌
青岛科技大学机电工程学院 青岛 266061
Influence of Synergistic Effect of Carbon Nanotubes/Carbon Black on Properties of Natural Rubber/Butadiene Rubber Composites
Jiangshan GAO, Yan HE(), Jin XU, Chang GUO
Qingdao University of Science and Technology, Qingdao 266061, China
引用本文:

高江姗, 何燕, 徐瑾, 郭昌. 碳纳米管/炭黑协同效应对天然橡胶/顺丁橡胶复合材料性能的影响[J]. 材料研究学报, 2017, 31(10): 758-764.
Jiangshan GAO, Yan HE, Jin XU, Chang GUO. Influence of Synergistic Effect of Carbon Nanotubes/Carbon Black on Properties of Natural Rubber/Butadiene Rubber Composites[J]. Chinese Journal of Materials Research, 2017, 31(10): 758-764.

全文: PDF(1051 KB)   HTML
摘要: 

使用两种一定比例的填料,在增加碳纳米管(CNTs)的同时不等量的减少炭黑(CB),其比例为m(CNTs):m(CB的减少量)=1:2.5,研究填料的变化对橡胶的力学等性能的影响。用扫描电镜(SEM)观察橡胶脆断面碳纳米管的分散情况,在3D测量激光显微镜下观察了橡胶拉伸断面的平整度和高度差。结果表明,填充4 phr CNTs时拉伸强度最高,比添加0 phr的高11.41%;随着CNTs的增多炭黑的减少使材料的加工性能变差,模量和耐磨性提高,填充8 phr CNTs的橡胶比0 phr的耐磨性高21.14%;根据动态力学性能测试(DMA)的损耗因子,随着碳CNTs添加量的增多橡胶的滚动阻力减小,但是抗湿滑性变差。

关键词 复合材料协同效应碳纳米管炭黑力学性能DIN磨耗DMA    
Abstract

Carbon nanotubes (CNTs) and carbon black (CB) were used as the hybrid reinforcing fillers, the coordinated effect of different fillers on the properties of composites was investigated. The filling content of CNTs increases as the decrease of CB content, and the mass ratio of CNTs increase to CB decrease is fixed to m (CNTs):m(decreasing amount of CB)=1:2.5.The dispersion of CNTs at the brittle fracture surface was gottenby the scanning electron microscopy (SEM). The flatness and height difference of the tensile fracture-surface were observed by 3D measuring laser microscope. The tensile strength was the best when 4 phr CNTs was filled, that was 11.41% higher than that of composites with 0 phr CNTs. The processability was worse and the modulus was enhanced, abrasion property increased with the increase of CNTs and composites with 8 phr CNTs was 21.14% more wearable than 0 phr CNTs. According to the loss factor of dynamic mechanical analysis (DMA), rolling resistance of composites was reductive but wet-skid resistance decreased with the increase of CNTs.

Key wordscomposite    synergistic effect    carbon nanotubes    carbon black    mechanical properties    DIN abrasion    DMA
收稿日期: 2016-07-27     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51276091、51676103),山东省自主创新及成果转化专项(2014ZZCX01503)
作者简介:

作者简介 高江姗,女,1991年生,博士生

Materials Dosage/phr
Natural rubber (NR) 80
Butadiene rubber (BR) 20
Silica 15
Si69 1.2
ZnO 4
Stearic acid 2
Antioxidant4020 2
AcceleratorNS 1.5
Sulfur 1.2
CNTs Variable X
Carbon black (CB) Variable Y (Y=(40-2.5X))
表1  实验配方
No. 1# 2# 3# 4# 5# 6# 7# 8# 9#
CNTs/phr 0 1 2 3 4 5 6 7 8
Carbon black/phr 40 37.5 35 32.5 30 27.5 25 22.5 20
表2  炭黑与碳纳米管配比的添加量
图1  不同配比复合材料的SEM表面形貌
图2  激光显微镜下橡胶拉伸断面2D图像
图3  橡胶拉伸断面的3D图像
图4  不同配比复合材料的拉伸强度和定伸应力
图5  不同配比复合材料的加工性能
图6  配比对模量和磨耗性能的影响
图7  添加不同份数碳纳米管的复合材料的损耗因子
No. 1# 3# 6# 9#
Tg/℃ -42.75 -41.57 -42.74 -42.42
Peak of Tg 0.885 0.840 0.843 0.858
表3  损耗因子峰所对应的值
图8  0℃和60℃时不同配比添加量复合材料的损耗因子值
[1] S. Iijima.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56
[2] Sandler JKW, Kirk JE, Shaffer MSP, et al.Ultra-lowelectrical percolation threshold in carbon-nanotube-epoxycomposites[J]. Polymer, 2003, 44(19): 5893
[3] T. W. Ebbesen, H. J. Lezec, H. Hiura, et al.Electrical conductivity of individualcarbonnanotubes[J]. Nature, 1996, 382(6586):54
[4] A.M. Shanmugharaj, J.H. Bae, K.Y. Lee,et al.Physical and chemical characteristics of multiwalled carbon nanotubesfunctionalized with aminosilane and its influence on theproperties of natural rubber composites[J].Compos. Sci. Technol., 2007, 67(9): 1813
[5] P. Kueseng, P. Sea-oui, N. Rattanasom, et al. Mechanical and electricalproperties of natural rubber and nitrile rubber blends filled withmulti-wall carbon nanotube: effect of preparation methods[J].PolymTest, 2013, 32(4): 731
[6] Lu L, Zhai.Y H, Zhang Y, et al. Reinforcementof hydrogenated carboxylated nitrile-butadiene rubber by multi-walledcarbon nanotubes[J].Appl. Surf. Sci., 2008, 255(5): 2162
[7] A. Sharma, B. Tripathi, Y. K. Vijay, Dramatic improvement in propertiesof magnetically aligned MWCNT/polymer nanocomposites[J]. J. Membrane. Sci., 2010, 361(1): 89
[8] E. T. Thostenson, T. W. Chou, Aligned multi-walled carbon nanotube-reinforcedcomposites: processing and mechanical characterization[J].JPhys.D. Appl.Phys.,2002, 35(16): 77
[9] P. Kueseng, P. Sae-oui, C. Sirisinha, et al. Anisotropic studies of multi-wall carbon nanotube (MWCNT)-filled natural rubber (NR) and nitrile rubber (NBR) blends[J]. Polym. Test., 2013, (32): 1229
[10] He Y, Cao Z F, MaL X, Shear flow induced alignment of carbon nanotubes in natural rubber[J]. Int. J.Polym. Sci., 2015
[11] He Y, Feng J J, Ma L X, Effect of align-carbon nanotubes on the properties of nature rubber composite materials[J]. Chinese J. Mater. Res., 2013, 27(5): 495(何燕, 冯娟娟, 马连湘. 定向碳纳米管对天然橡胶复合材料性能的影响[J]. 材料研究学报, 2013, 27(5): 495)
[12] Yang S Y, Lin W N, Huang Y L.Synergetic effects of graphemeplatelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011, 49(3): 793
[13] Fan Z J, Wang Y, Luo G H, et al.The synergetic effect of carbon nano-tubes and carbon black in a rubber system[J]. New Carbon Mater., 2008, 23(2): 149(范壮军, 王垚, 罗国华等. 碳纳米管和炭黑在橡胶体系增强的协同效应[J]. 新型炭材料, 2008, 23(2): 149)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.