Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 649-654    DOI: 10.11901/1005.3093.2015.697
  研究论文 本期目录 | 过刊浏览 |
磁控溅射制备Nb掺杂IZO薄膜光电学性能研究
曹明杰,赵明,庄大明,郭力,欧阳良琦,孙汝军,詹世璐
先进成形制造教育部重点实验室 清华大学材料学院 北京 100084
Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering
Mingjie CAO,Ming ZHAO,Daming ZHUANG,Li GUO,Liangqi SUN Rujun OUYANG,Shilu ZHAN
Key Lab for Advanced Materials Processing Technologies, Ministry of Education, China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
引用本文:

曹明杰,赵明,庄大明,郭力,欧阳良琦,孙汝军,詹世璐. 磁控溅射制备Nb掺杂IZO薄膜光电学性能研究[J]. 材料研究学报, 2016, 30(9): 649-654.
Mingjie CAO, Ming ZHAO, Daming ZHUANG, Li GUO, Liangqi SUN Rujun OUYANG, Shilu ZHAN, . Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2016, 30(9): 649-654.

全文: PDF(818 KB)   HTML
摘要: 

通过磁控溅射方法制备一种新型薄膜晶体管有源层材料Nb掺杂的氧化铟锌(IZO)非晶薄膜(a-INZO)。运用XRD、光致发光、Hall测试等检测方法分析INZO薄膜微观结构、缺陷状态以及电学性能。光致发光结果表明, INZO相较于Ga掺杂的IZO (IGZO)具有更低的深能级缺陷密度。Hall效应测试结果表明, 通过调节溅射过程中氧气流量可有效控制INZO薄膜载流子浓度, 使之适合于制备薄膜晶体管(TFT)器件。INZO薄膜迁移率随载流子浓度的变化规律符合渗流传导模型, 载流子浓度较低时, 迁移率随载流子浓度增加而增加; 载流子浓度较高时, 迁移率下降, 光学数据的分析表明其带尾态宽度较大, 结构更无序。提高溅射基底温度可有效提高迁移率, 但对薄膜无序度的改善并不明显。

关键词 无机非金属材料Nb掺杂IZOINZO光致发光迁移率磁控溅射    
Abstract

Niobium doped indium-zinc oxide (INZO) film, as a new channel layer material for thin film transistors (TFTs), was deposited on glass by co-sputtering targets of IZO and Nb2O5. The optical and electronic properties of the films were investigated by means of XRD, photo luminescence (PL) and Hall effect measurements. The PL results indicate that the density of deep sub-gap states in INZO films is lower than that of Ga doped IZO (IGZO). The Hall measurement results show that the carrier concentration of INZO can be effectively controlled by the O2 flow rates and thereby the carrier concentration of INZO can meet the requirement for TFT application as a channel layer. The Hall mobility increases with the increasing carrier concentration, which can be well explained by the percolation model. Optical analysis of Urbach energy demonstrates that the poor mobility with high carrier concentration originates from the structural disorder due to overabundant oxygen vacancies. The films deposited on the substrate at 250oC exhibit higher mobility but more or less the same degree of structural disorder in comparision with that at 30oC.

Key wordsinorganic non-metallic materials    Nb doped IZO    INZO    photo luminescence    mobility    sputtering
收稿日期: 2015-12-12     
图1  30℃基底温度、纯Ar气氛下溅射制备的INZO薄膜XRD图谱
图2  IGZO薄膜与不同基底温度下制备的INZO薄膜光致发光发射图谱的比较
图3  不同氧气流量下制备的INZO薄膜载流子浓度
图4  INZO薄膜迁移率随载流子浓度的变化
图5  INZO薄膜光学透过率与反射率(a)以及吸收系数图谱(b, c)
Samples Substrate
temperature
O2 flow
rate/sccm
EU/meV
A Room temperature 0.25 203
B 0.50 160
C 1.00 156
D 2.00 164
E 250℃ 0 270
F 1.00 173
G 2.00 176
H 3.00 167
表1  不同氧气流量下制备的INZO薄膜
[1] E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances, Advanced Materials, 24(22), 2945(2012)
[2] J. Kwon, D. Lee, K. Kim, Review paper: transparent amorphous oxide semiconductor thin film transistor, Electronic Materials Letters, 7(1), 1(2011)
[3] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, H. D. Kim, High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel, Applied Physics Letters, 91(35), 350511(2007)
[4] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, Toward high-performance amorphous GIZO TFTs, Journal of the Electrochemical Society, 156(3), H161(2009)
[5] Y. Kikuchi, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, H. Hosono, Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing, Thin Solid Films, 518(11), 3017(2010)
[6] H. H. Hsiao, Y. C. Chun, H. C. Chun, A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature, IEEE Electron Device Letters, 34(6), 768(2013)
[7] K. Nomura, H.Ohta, A.Takagi, T.Kamiya, M.Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432(7016), 488(2004)
[8] S. Hong, S. Lee, M. Mativenga, J. Jang, Reduction of negative bias and light instability of a-IGZO TFTs by dual-gate driving, IEEE Electron Device Letters, 35(1), 93(2014)
[9] B. Cho, J. Lee, H. Seo, H. Jeon, Electrical stability enhancement of the amorphous In-Ga-Zn-O thin film transistor by formation of Au nanoparticles on the back-channel surface, Applied Physics Letters, 102(21), 210810(2013)
[10] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. Bae, J. Lee, B. D. Ahn, S. Y. Park, J. Park, J. Park, H. Kwon, D. M. Kim, D. H. Kim, Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors, IEEE Electron Device Letters, 33(1), 62(2012)
[11] E. Chong, K. C. Jo, S. Y. Lee, High stability of amorphous hafnium-indium-zinc-oxide thin film transistor, Applied Physics Letters, 96(15), 152102(2010)
[12] A. Liu, Q. Zhang, G. X. Liu, F. K. Shan, J. Q. Liu, W. J. Lee, B. C. Shin, J. S. Bae, Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors, Journal of Electroceramics, 33(1-2), 31(2014)
[13] B. Y. Su, S. Y. Chu, Y. D. Juang, S. Y. Liu, Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors, Journal of Alloys and Compounds, 580, 10(2013)
[14] C. Ting, W. Li, C. Wang, H. Yong, Structural and electrical properties of the europium-doped indium zinc oxide thin film transistors, Thin Solid Films, 562, 625(2014)
[15] S. Parthiban, S. Kim, J. Kwon, Sputtered deposited carbon-indium-zinc oxide channel layers for use in thin-film transistors, IEEE Electron Device Letters, 35(10), 1028(2014)
[16] D. Son, D. Kim, S. Park, S. Sung, J. Kang, Effect of Ta addition of co-sputtered amorphous tantalum indium zinc oxide thin film transistors with bias stability, Journal of Nanoscience and Nanotechnology, 14(11), 8163(2014)
[17] W. S. Choi, H. Jo, M. S. Kwon, B. J. Jung, Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping, Current Applied Physics, 14(12), 1831(2014)
[18] H. K. Noh, K. J. Chang, B. Ryu, W. J. Lee, Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors, Physical Review B, 84(52), 520511(2011)
[19] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, S. Park, Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor, Applied Physics Letters, 98(33), 335043(2011)
[20] Y. S. Rim, W. Jeong, B. D. Ahn, H. J. Kim, Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing, Applied Physics Letters, 102(35), 350314(2013)
[21] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese Journal of Applied Physics, 45(5B), 4303(2006)
[22] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, H. Hosono, Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy, Journal of Applied Physics, 109(7), 073726(2011)
[23] N.Yamaguchi, S. Taniguchi, T. Miyajima, M. Ikeda, Optical and electrical properties of amorphous InGaZnO, Journal of Vacuum Science & Technology B, 27(3), 1746(2009)
[24] C. R. Kagan, P. Andry, WANG Jun, LIAO Yanping, Thin-Film Transistors (Beijing, Publishing House of Electronics Industry, 2008) p. 190
[24] (Kagan Cherie R., Andry Paul 编, 王军, 廖燕平译, 薄膜晶体管 (TFT) 及其在平板显示中的应用 (北京, 电子工业出版社, 2008) p. 190)
[25] T. Kamiya, K. Nomura, H. Hosono, Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors, Applied Physics Letters, 96(21), 210312(2010)
[26] F. Urbach.Thelong-wavelengthedgeofphotographicsensitivityand of theelectronicabsorptionofsolids, Physical Review, 92, 1324(1953)
[27] E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philosophical Magazine A, 22(179), 903(1970)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.