Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 641-648    DOI: 10.11901/1005.3093.2015.529
  研究论文 本期目录 | 过刊浏览 |
氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变*
付振宇,王泽群,刘平平,魏印平,万发荣,詹倩
北京科技大学材料科学与工程学院 北京 100083
Irradiation Hardening and Defects Distribution in CLAM Steel under Deuterium and Helium Ion Irradiation
Zhenyu FU,Zequn WANG,Pingping LIU,Yinping WEI,Farong WAN,Qian ZHAN
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

付振宇,王泽群,刘平平,魏印平,万发荣,詹倩. 氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变*[J]. 材料研究学报, 2016, 30(9): 641-648.
Zhenyu FU, Zequn WANG, Pingping LIU, Yinping WEI, Farong WAN, Qian ZHAN. Irradiation Hardening and Defects Distribution in CLAM Steel under Deuterium and Helium Ion Irradiation[J]. Chinese Journal of Materials Research, 2016, 30(9): 641-648.

全文: PDF(4874 KB)   HTML
摘要: 

结合先进电子显微术和纳米压痕分析, 对低活化马氏体CLAM钢的辐照行为进行了研究。在室温下对CLAM钢进行了单一注D+、单一注He+以及先注D+后注He+三种方式的离子辐照。纳米压痕硬度结果显示, 离子辐照后的CLAM钢均产生了明显的硬化。通过对纳米压痕硬度曲线的拟合, 得到各离子辐照后的硬化率。结果表明, 注D+的辐照硬化程度最低, 而注He+与D+、He+共同辐照的硬化程度均很明显。微观结构分析表明, 沿离子注入深度方向, 辐照缺陷密度逐渐增加然后减少; 在注入深度峰值附近, 产生了数密度较多的缺陷。对于单独注入He+离子以及先注D+后注入He+的CLAM钢, 都产生了大量细小弥散的He泡, 并且由于离子协同效应后者出现深度较浅的泡; 单独注入D+的CLAM钢, 并没有出现泡。注He+样品中既有位错环也有He泡, 硬化效应比只有位错环的注D+样品明显; 而先注D+后注He+的样品, 由于注D+产生的缺陷在后续注He+时会有一定的回复, 硬化效果不是注D+和注He+的简单叠加, 体现出协同效应。

关键词 金属材料CLAM钢辐照效应缺陷分布    
Abstract

The irradiation behavior of a China low activation martensitic (CLAM) steel was investigated by advanced transmission electron microscopy combined with nano-indentation measurement. The CLAM steel was irradiated by single-(D+), single-(He+) and sequential-(D+ plus He+ subsequently) ions respectively at room temperature. The nano-indentation hardness results show that all of the irradiated specimens exhibited obvious hardening. The irradiation hardening rate was obtained for each specimens by fitting the experimental data using the modified NGK model, in which D+ implanted samples had the lowest radiation hardening level while the one for He+ injection and D+ + He+ implanted samples were significant. The microstructure analysis indicates that the defect density gradually increased first and then decreased along the implantation depth direction. High-density irradiation induced defects were present at the vicinity of the implantation peak depth. Homogeneously distributed fine bubbles were observed in both single-(He+) and sequential-(D+ plus He+ subsequently) irradiated samples with the bubble appearance at shallower depth for the latter ones because of the synergistic effect. No bubbles were found in single-(D+) irradiated samples. The hardening rate of He+ implanted samples, in which both dislocation loops and helium bubbles occurred, is greater than D+ implanted samples. In D++He+ irradiated samples, certain defects occurred by D+ will recover when the samples are being irradiated by He+. Therefore, the hardening rate of D++He+ irradiated samples is not equivalent to the rate of D+ irradiated samples plus He+ irradiated samples. Irradiation hardening results from the synergistic reaction.

Key wordsmetallic materials    CLAM steel    irradiation effect    defects distribution    bubble
收稿日期: 2015-09-07     
基金资助:* 国家磁约束核聚变发展研究专项2014GB104003、 2014GB120001和国家自然科学基金51371031资助
Ion irradiation Fluence / ionscm-2 Temperature / ℃ Energy / keV
D+ 1×1017 150
He+ 5×1016 room temperature 380
D++He+ 1×1017+5×1016 150/380
表1  辐照实验主要参数
图1  SRIM软件模拟计算D+离子、He+离子的DPA与浓度随注入深度变化曲线 (a) D+离子注入; (b) He+离子注入
图2  压头压入材料的剖面图和压头的俯视投影图
图3  注D+、He+、D++He+前后的CLAM钢纳米压痕硬度随深度变化的曲线
Ion irradiation HL HS A k t
He+ 7.06724 4.90348 538.6809 0.00258 14.41192
D+ 4.90441 4.19019 634.188 0.04355 38.9387
D++He+ 7.60068 4.80226 757.6145 0.00368 11.06666
表2  根据修正模型计算HL和HS值
图4  离子辐照后的CLAM钢经过NGK模型计算拟合的纳米硬度随深度变化曲线 (a) D+离子辐照; (b) He+离子辐照; (c) D+离子+He+离子辐照
图5  离子注入前CLAM钢的原始微观组织、M23C6相和 MC相的电子衍射谱
图6  CLAM钢经过D+辐照后的截面组织的微观形貌像
图7  He+注入后的CLAM钢沿深度方向微观组织的TEM像(c)(d)(e)(f)分别对应不同深度处的形貌
图8  先注D+后注He+的CLAM钢不同深度处微观组织的TEM像
[1] T. Muroga, M. Gasparotto, S. Zinkle, Overview of materials research for fusion reactors, Fusion Engineering and Design, 61, 13(2002)
[2] S. Jitsukawa, M. Tamura, B. Van der Schaaf, R. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. Odette, A. Tavassoli, Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H, Journal of Nuclear Materials, 307, 179(2002)
[3] H. Sakasegawa, T. Hirose, A. Kohyama, Y. Katoh, T. Harada, K. Asakura, Microstructural stability of reduced activation ferritic/martensitic steels under high temperature and stress cycling, Fusion Engineering and Design, 61, 671(2002)
[4] J. Rensman, E. Lucon, J. Boskeljon, J. Van Hoepen, R. Den Boef, P. Ten Pierick, Irradiation resistance of Eurofer97 at 300 C up to 10 dpa, Journal of Nuclear Materials, 329, 1113(2004)
[5] Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao, Progress in development of China low activation martensitic steel for fusion application, Journal of Nuclear Materials, 367, 142(2007)
[6] Q. Huang, C. Li, Q. Wu, S. Liu, S. Gao, Z. Guo, Z. Yan, B. Huang, Y. Song, Z. Zhu, Progress in development of CLAM steel and fabrication of small TBM in China, Journal of Nuclear Materials, 417, 85(2011)
[7] ZHANG Chonghong, Research on irradiation damage of candidate structure materials for fusion reactor, Academic Report of the National Physical and Chemical Examination of Nonferrous Metals, (2011)
[7] (张崇宏, 聚变堆候选结构材料辐照损伤的研究, 全国有色金属理化检验学术报告会论文集(2011))
[8] QIAO Jiansheng, HUANG Yina, XIAO Xin, WAN Farong, LONG Yi, Effect of hydrogen ion irradiation on the microstructure of CLAM steel, Journal of University of Science and Technology Beijing, 31, 842(2009)
[8] (乔建生, 黄依娜, 肖鑫, 万发荣, 龙毅, 氢离子辐照对CLAM钢微观结构的影响, 北京科技大学学报, 31, 842(2009))
[9] HUANG Yina, WAN Farong, QIAO Jiansheng, XIAO Xin, S. Ohnuki, N. Hashimoto, Behavior of defects in deuterium ions implanted reduced activation martensitic steel under electron irradiation, Atomic Energy Science and Technology, 44, 681(2010)
[9] (黄依娜, 万发荣, 乔建生, 肖鑫, S. Ohnuki, N. Hashimoto, 注D+低活化马氏体钢在电子辐照下的缺陷行为, 原子能科学技术, 44, 681(2010))
[10] M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, H. Takeuchi, Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique, Journal of Nuclear Materials, 307, 260(2002)
[11] P. D. Edmondson, C. M. Parish, Y. Zhang, A. Hallén, M. K. Miller, Helium bubble distributions in a nanostructured ferritic alloy, Journal of Nuclear Materials, 434, 210(2013)
[12] Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, M. Ando, D. Hamaguchi, H. Tanigawa, Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single-and dual-ion beam irradiation, Journal of Nuclear Materials, 442, S23(2013)
[13] K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation, Journal of Nuclear Materials, 446, 142(2014)
[14] James F. Ziegler, SRIM-2003, Nuclear instruments and methods in physics research section B: Beam Interactions with Materials and Atoms, 219-220, 1027(2004)
[15] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research Home, 7, 1564(1992)
[16] K. Durst, B. Backes, M. G?ken.Indentation size effect in metallic materials: correcting for the size of the plastic zone, Scripta Materialia, 52(11), 1093(2005)
[17] W. D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 46(3), 411, (1998)
[18] P. P. Liu, F. R. Wan, Q. Zhan, A model to evaluate the nano-indentation hardness of ion-irradiated materials, Nuclear instruments and methods in physics research, Section B: Beam Interactions with Materials and Atoms, 342, 13(2015)
[19] M. Z. Zhao, J. W. Bai, Y. M. Zhu, F. R. Wan, Q. Zhan, In-situ observation of the effect of the precipitate/matrix interface on the evolution of dislocation structures in CLAM steel during irradiation, Fusion Engineering and Design, 89, 2759(2014)
[20] P. P. Liu, M. Z. Zhao, Y. M. Zhu, J. W. Bai, F. R. Wan, Q. Zhan, Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel, Journal of Alloys and Compounds, 579, 599(2013)
[21] 21 K. Morishita, R. Sugano, B. D. Wirth, MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, Journal of Nuclear Materials, 323, 243(2003)
[22] 22 K. Morishita, R. Sugano, B. D. Wirth, T. Diaz de la Rubia, Thermal stability of helium-vacancy clusters in iron, Nuclear Instruments and Methods in Physics Research B, 202, 76(2003)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.