Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 627-633    DOI: 10.11901/1005.3093.2015.313
  本期目录 | 过刊浏览 |
Yb/Y双掺杂氧化锆在熔盐腐蚀环境中的元素扩散和相变机理研究*
徐俊1, 陈宏飞1, 杨光1, 罗宏杰1, 高彦峰1,2
1. 上海大学材料科学与工程学院 上海 200444
2. 中国科学院上海硅酸盐研究所 上海 200072
Elements Diffusion and Phase Transitions in Yb/Y Co-doped Zirconia Ceramic under Molten-salt Corrosive Environment
XU Jun1, CHEN Hongfei1,**, YANG Guang1, LUO Hongjie1, GAO Yanfeng1,2,**
1. College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2. Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200072, China
引用本文:

徐俊, 陈宏飞, 杨光, 罗宏杰, 高彦峰. Yb/Y双掺杂氧化锆在熔盐腐蚀环境中的元素扩散和相变机理研究*[J]. 材料研究学报, 2016, 30(8): 627-633.
Jun XU, Hongfei CHEN, Guang YANG, Hongjie LUO, Yanfeng GAO. Elements Diffusion and Phase Transitions in Yb/Y Co-doped Zirconia Ceramic under Molten-salt Corrosive Environment[J]. Chinese Journal of Materials Research, 2016, 30(8): 627-633.

全文: PDF(3386 KB)   HTML
摘要: 

高温腐蚀性环境是发动机热端部件热障涂层出现机械应力失配和氧化锆晶型变化从而发生失效的主要原因之一。本文通过共沉淀-煅烧法制备了Yb/Y双掺杂氧化锆粉体, 压片烧结后进行高温熔盐(CaO-MgO-Al2O3-SiO2, CMAS)腐蚀实验, 利用XRD、SEM及EDS等表征手段对腐蚀过程中元素的扩散和物相、形貌的变化进行研究。结果表明, 氧化锆晶格中的Yb在腐蚀过程中先于其他元素与CMAS反应而流失(从氧化锆晶格扩散至腐蚀剂中), 但Yb的流失能减缓Y元素的偏析, 从而稳定亚稳四方相氧化锆(t-ZrO2); Yb的最优掺杂量为5%, 此时腐蚀反应产生的单斜相氧化锆(m相)的含量最少。

关键词 材料失效与保护热障涂层Yb/Y双掺杂氧化锆熔盐腐蚀扩散结晶相转变    
Abstract

Ingeneral,high-temperature salt-corrosion may usually induce mechanical stresses and phase transformation within ZrO2,as the main componentof thermal barrier coatings (TBCs), therewith further cause the failure of TBCsfor hot section components of gas turbine. Yb/Y co-doped zirconia (YbYSZ) powder was synthesized by a coprecipitation-calcination method, thenYbYSZ ceramic pallets were obtained by cold pressing and subsequent sintering at high temperature. The corrosion behavior of thepallets coated with a film of powder mixture CaO-MgO-Al2O3-SiO2 (CMAS) was examined in air at 1250℃ for different time intervals. The elemental diffusion and phase transformationwith YbYSZ after high-temperature corrosion wereinvestigated by XRD, SEM and EDS. The results showed that among othersthe elementYbin YbYSZ reacted preferenyially with CMAS and dissolved into the molten saltCMAS. The loss of Yb could suppressed the segragation of Y from the rest YbYSZ.Consequently, it stabilized the metastable tetragonal phase (t'-zirconia). The optimal dose of Yb is 5 mass% for the minimal yield of monoclinic ZrO2 in the YbYSZ after corrosion test.

Key wordsmaterials failure and protection    thermal barrier coating    Yb/Y co-doped zirconia    molten-salt corrosion    diffusion    phase transition
收稿日期: 2015-05-28     
基金资助:* 国家自然科学基金51402183和上海市科委基础研究重大项目12DJ1400403资助
作者简介: 本文联系人: 陈宏飞
图1  3%Yb掺杂YSZ在1250℃不同腐蚀时间的SEM图
图2  YbYSZ被CMAS在1250℃腐蚀2 h后的SEM图, B图为A图的局部放大
Elements content Region C Region D
O 65.89 72.80
Zr 1.36 23.82
Y 0.69 2.49
Yb 0 0.34
Ca 11.70 0.30
Mg 2.59 0.12
Al 4.15 0.08
Si 13.60 0.06
表1  CMAS腐蚀YbYSZ中各区域元素含量
图3  CMAS在1250℃腐蚀YbYSZ陶瓷的过程示意图
图4  YbYSZ腐蚀产物XRD图
图5  (a)3%Yb掺杂YSZ分别腐蚀1 h、2 h、5 h后各元素含量变化; (b)不同Yb掺杂量的YSZ腐蚀5 h后各元素含量的变化
图6  不同掺杂浓度YbYSZ在1250℃腐蚀2 h后的XRD图
图7  3%YbYSZ在1250℃腐蚀不同时间的XRD图
图8  m相氧化锆相对含量与稀土掺杂元素含量及时间的关系图
1 Borom M. P.,C. A. Johnson, L. A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings, Surface and Coatings Technology, 86, 116(1996)
doi: 10.1016/S0257-8972(96)02994-5
2 Mercer C.,A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Materialia, 53(4), 1029(2005)
doi: 10.1016/j.actamat.2004.11.028
3 Krämer S.,Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration, Materials Science and Engineering: A, 490(1), 26(2008)
doi: 10.1016/j.msea.2008.01.006
4 Krämer S.,Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits, Journal of the American Ceramic Society, 89(10), 167(2006)
doi: 10.1111/j.1551-2916.2006.01209.x
5 Li L.,N. Hitchman, J. Knapp, Failure of Thermal Barrier Coatings Subjected to CMAS Attack, Journal of Thermal Spray Technology, 19(1-2), 148(2009)
6 Guo X.,Crystallization and microstructure of CaO-MgO-Al2O3-SiO2 glass-ceramics containing complex nucleation agents, Journal of Non-Crystalline Solids, 405, 63(2014)
doi: 10.1016/j.jnoncrysol.2014.08.048
7 Wiesner, V. L. and N.P. Bansal, Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass, Surface and Coatings Technology, 259, 608(2014)
doi: 10.1016/j.surfcoat.2014.10.023
8 Grant K. M.,CMAS degradation of environmental barrier coatings, Surface and Coatings Technology, 202(4-7), 653(2007)
doi: 10.1016/j.surfcoat.2007.06.045
9 Peng H.,Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits, Progress in Natural Science: Materials International, 22(5), 461(2012)
doi: 10.1016/j.pnsc.2012.06.007
10 Drexler J. M.,Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits, Acta Materialia, 58(20), 6835(2010)
doi: 10.1016/j.actamat.2010.09.013
11 HE Qing, LIU Xinji, LIU Bo, Influence of CMAS infiltration on microstructure of plasma-sprayed YSZ thermal barrier coating, China Surface Engineering, 25(4), 42(2012)
11 (何箐, 刘新基, 柳波, CMAS 渗入对等离子喷涂 YSZ 热障涂层形貌的影响, 中国表面工程, 25(4), 42(2012))
12 Kim J.,Deposition of volcanic materials in the hot sections of two gas turbine engines, Journal of Engineering for Gas Turbines and Power, 115(3), 641(1993)
13 Stott F.,R. Taylor, D. de Wet, The effects of molten silicate deposits on the stability of thermal barrier coatings for turbine applications at very high temperatures, Proceedings of Advanced Materials, 3(A93-53376 23-23), 92(1992)
14 Chen X.,On the propagation and coalescence of delamination cracks in compressed coatings: with application to thermal barrier systems, Acta Materialia, 51(7), 2017(2003)
doi: 10.1016/S1359-6454(02)00620-1
15 Majewski M. S.,Stress measurements via photoluminescence piezospectroscopy on engine run thermal barrier coatings, Surface and Coatings Technology, 206(11-12), 2751(2012)
doi: 10.1016/j.surfcoat.2011.11.026
16 Habibi M. H.,L. Wang, S. M. Guo, Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050℃, Journal of the European Ceramic Society, 32(8), 1635(2012)
doi: 10.1016/j.jeurceramsoc.2012.01.006
17 Zacate M. O.,Defect cluster formation in M2O3-doped cubic ZrO2, Solid State Ionics, 128(1), 243(2000)
doi: 10.1016/S0167-2738(99)00348-3
18 LIU Huaifei, Preparation and properties of zirconia based thermal barrier coatings co-doped with two rare earth oxides, PhD dissertation, Central South University (2011)
18 (刘怀菲, 二元稀土氧化物复合稳定氧化锆热障涂层材料的制备及性能研究, 博士学位论文, 中南大学(2011))
doi: 10.7666/d.y1918001
19 Mohan P., et al, Degradation of yttria stablized zirconia thermal barrier coatings by molten CMAS(CaO-MgO-Al2O3-SiO2) deposits in Materials Science Forum. Trans. Tech. Publ., (2008)
doi: 10.4028/www.scientific.net/MSF.595-598.207
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 李瑞一, 谢敏, 张永和, 裴训, 刘洋, 宋希文. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能[J]. 材料研究学报, 2022, 36(1): 49-54.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
[8] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[9] 赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
[10] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.
[11] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.