Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 620-626    DOI: 10.11901/1005.3093.2015.304
  本期目录 | 过刊浏览 |
超快冷对厚规格X80管线钢组织性能的影响
牛涛1, 吴新朗2, 安成钢1, 姜永文1, 张彩霞2, 于晨2, 代晓莉1
1. 首钢技术研究院 北京 100043
2. 首钢股份公司迁安钢铁公司 迁安 064404
Effect of Ultra-Fast Cooling on Microstructure and Performance of Thick X80 Pipeline Steel
NIU Tao1,*, WU Xinlang2, AN Chenggang1, JIANG Yongwen1, ZHANG Caixia2, YU Chen2, DAI Xiaoli1
1. Shougang Research Institute of Technology, Beijing 100043, China
2. Shougang Qian'an Iron &Steel Co. Ltd, Qian'an 064404, China
引用本文:

牛涛, 吴新朗, 安成钢, 姜永文, 张彩霞, 于晨, 代晓莉. 超快冷对厚规格X80管线钢组织性能的影响[J]. 材料研究学报, 2016, 30(8): 620-626.
Tao NIU, Xinlang WU, Chenggang AN, Yongwen JIANG, Caixia ZHANG, Chen YU, Xiaoli DAI. Effect of Ultra-Fast Cooling on Microstructure and Performance of Thick X80 Pipeline Steel[J]. Chinese Journal of Materials Research, 2016, 30(8): 620-626.

全文: PDF(0 KB)   HTML
摘要: 

采用Gleeble试验机研究了厚规格 (22mm) X80管线钢的动态相变行为, 得到了动态CCT曲线, 对不同冷却工艺钢的显微组织、力学性能以及析出行为进行了系统的对比分析。结果表明, 在40℃/s的高冷速条件下试验用钢的组织为细小的板条贝氏体(LB), 相变终止温度达到约400℃; 在超快冷工艺条件下钢卷的强度有所提高, 韧性没有明显的变化; 其显微组织中准多边形铁素体(QF)的比例下降, 板条贝氏体(LB)的比例上升, M/A岛的比例有所降低; 轧后快冷可抑制奥氏体中的析出, 提高Nb在铁素体中的析出比例, 使析出粒子尺寸更加细小, 提高析出强化效果。

关键词 金属材料管线钢超快冷相变组织M/A岛析出    
Abstract

Dynamic phase transformation behavior and CCT curves of 22 mm thick X80 pipeline steel were investigated using Gleeble simulator. Comparative analysis of microstructure, mechanical properties and precipitation behavior was carried out for the steel cooled by different ways. Results reveal that even under cooling rate of 40℃/s, the microstructure still consists of mainly the refined lath bainite (LB), while the end phase of transformation temperature reaches about 400℃. The strength of coil increases without obvious change in toughness due to ultra fast cooling. The proportion of Quasi-polygnoal ferrite (QF) reduces as well as M/A island, while that of lath bainite (LB) rises instead. Precipitation of Nb(C, N) has been inhibited by ultra fast cooling after rolling, which increases the proportion of precipitate in α-Fe with more refined particle size and promotes the precipitation strengthening effect.

Key wordsmetallic materials    pipeline steel    ultra-fast cooling    phase transformation    microstructure    M/A island    precipitation
收稿日期: 2015-10-12     
作者简介: 本文联系人: 牛 涛
C Mn Nb Mo Others Ceq Pcm
≤0.06 1.75 0.06~0.09 0.15~0.25 Cu、Ni、Cr 0.44 0.18
表1  试验用X80管线钢的成分(质量分数, %)
图1  动态CCT实验工艺
图2  不同冷速的显微组织
图3  X80管线钢的CCT曲线
Rt0.5/MPa Rm/MPa Y/T A50.8/% Cvn /J
(-20℃)
DWTT /%
(-15℃)
1#--Laminar cooling 556 698 0.80 22.2 387 100
2#--Super fast cooling+laminar cooling 585 712 0.82 22.4 363 100
表2  不同工艺X80管线钢的力学性能
图4  不同冷却工艺钢的显微组织
图5  不同冷却工艺钢的M/A岛形貌
图6  不同冷却工艺钢析出粒子的形貌
1 JIANG Min, ZHI Yuming, LIU Weidong, PANG Wei, LU Xionggang, ZHONG Qingdong, LI Chonghe, Status and development of pipe line steel in China, Shanghai Metals, 31(6), 42(2009)
1 (姜敏, 支玉明, 刘卫东, 庞威, 鲁雄刚, 钟庆东, 李重河, 我国管线钢的研发现状和发展趋势, 上海金属, 31(6), 42(2009))
doi: 10.3969/j.issn.1001-7208.2009.06.010
2 ZHANG Shuai, REN Yi, WANG Shuang, LIU Wenyue, GAO Hong, Experimental investigation on the alloy reduction of pipeline steel with high strength and heavy section, Shanghai Metals, 36(4), 1(2014)
2 (张帅, 任毅, 王爽, 刘文月, 高红, 高强度大壁厚管线钢合金减量化试验研究, 上海金属, 36(4), 1(2014))
doi: 10.3969/j.issn.1001-7208.2014.04.001
3 Fujibayashi A, Omata K, JFE Steels advanced manufacturing technologies for high performance steel plates, JFE Technical Report, 5, 10(2005)
4 ZHOU Xiaoguang, WANG Meng, LIU Zhenyu, WU Di, WANG Guodong, Effect of ultra fast cooling on microstructure and properties of X70 pipeline steel, Transactions of Materals and Heat Treatment, 34(9), 80(2013)
4 (周晓光, 王猛, 刘振宇, 吴迪, 王国栋, 超快冷对X70管线钢组织和性能的影响, 材料热处理学报, 34(9), 80(2013))
5 CHEN Yulai, ZHANG Dongbin, YU Wei, GUO Jin, Influence of ultra-fast cooling on the microstructure of X70 pipeline steel, Journal of University of Science and Technology Beijing, 35(2), 184(2013)
5 (陈雨来, 张栋斌, 余伟, 郭锦, 超快冷工艺对X70管线钢组织的影响, 北京科技大学学报, 35(2), 184(2013))
6 XIAO Baoliang, XU Yunbo, LI Zhijie, ZHANG Fusheng, WANG Guodong, Effects of high temperature large deformation and ultra fast cooling process on microstructure and mechanical properties of X70 pipeline steel, Journal of Iron and Steel Research, 23(3), 39(2011)
6 (肖宝亮, 徐云波, 李智杰, 张福生, 王国栋, “高温大变形+超快冷”工艺对X70管线钢组织性能的影响, 钢铁研究学报, 23(3), 39(2011))
7 ZHOU Xiaoguang, LIU Zhenyu, WU Di, WANG Guodong, Effects of ultra fast cooling ending temperature on microstructure and mechanical properties of X80 pipeline steel, Materials for Mechanical Engineering, 36(10), 5(2012)
7 (周晓光, 刘振宇, 吴迪, 王国栋, 超快速冷却终止温度对X80管线钢组织和性能的影响, 机械工程材料, 36(10), 5(2012))
8 KONG Junhua, Research on processing, microstructure and properties of X80 high grade pipeline steel, PhD Dissertation, Huazhong University of Science and Technology, 2005
8 (孔君华, 高钢级X80管线钢工艺、组织与性能的研究, 博士学位论文, 华中科技大学, 2005)
doi: 10.7666/d.d009972
9 SONG Weixi, Metallography(Beijing, Metallurgy Industry Press, 2007) p.369
9 (宋维锡, 金属学(北京, 冶金工业出版社, 2007)p.369)
10 ZHOU Leyu, Research on Flexible Control of Microstructure and Properties of High Strength Nb Bearing Hot-Rolled Dual Phase Steel, PhD Dissertation, University of Science and Technology Beijing, 2008
10 (周乐育, 高强度含铌热轧双相钢组织性能柔性控制研究, 博士学位论文, 北京, 北京科技大学, 2008)
11 Zhu Guo-sen, Niu Tao, Li Shao-po, Chen Yan-qing, Research on key technology of pipeline steel-Shougang Group, The 13th China-Japan Symposium on Science and Technology of Iron and Steel, 192(2013)
12 LONG Mingjian, Research and Control on Microstructure and Property of X70 Pipeline Steel Produced by Steckel Mill, Master Dissertation, University of Science and Technology Beijing, 2009
12 (龙明建, 炉卷轧机生产X70管线钢的组织性能控制, 硕士学位论文, 北京, 北京科技大学, 2009)
doi: 10.3969/j.issn.1674-3644.2009.06.005
13 LIAO Bo, XIAO Furen, Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel, Transactions of Materials and Heat Treatment, 30(2), 57(2009)
13 (廖波, 肖福仁, 针状铁素体管线钢组织及强韧化机理研究, 材料热处理学报, 30(2), 57(2009))
14 XU XueLi, XIN Xixian, ShI Kai, ZHOU Yong, Effects of welding thermal cycle on toughness and microstructure of coarse grained region of X80 pipeline steel, Transactions of the China Welding Institution, 26(8), 70(2005)
14 (徐学利, 辛希贤, 石凯, 周勇, 焊接热循环对X80管线钢粗晶区韧性和组织的影响, 焊接学报, 26(8), 70(2005))
doi: 10.3321/j.issn:0253-360X.2005.08.018
15 ZHOU Xiaoguang, WANG Meng, LIU Zhenyu, YANG Hao, WU Di, WANG Guodong, Precipitation and models at ferrite phase zone for niobium bearing steel under ultra fast cooling condition, Journal of Material Engineering, 9, 1(2014)
15 (周晓光, 王猛, 刘振宇, 杨浩, 吴迪, 王国栋, 超快冷条件下含Nb钢铁素体相变区析出及模型研究, 材料工程, 9, 1(2014))
doi: 10.11868/j.issn.1001-4381.2014.09.001
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.