|
|
用扩散法制备MgB2块材的研究进展 |
赵万里1,2, 索红莉1( ), 刘敏1,2, 马麟1,2, 戴银明1,2, 张子立2( ) |
1.北京工业大学材料与制造学部 北京 100124 2.中国科学院电工研究所 北京 100190 |
|
Research Progress in Preparation of MgB2 Bulk by Diffusion Method |
ZHAO Wanli1,2, SUO Hongli1( ), LIU Min1,2, MA Lin1,2, DAI Yinming1,2, ZHANG Zili2( ) |
1.The Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
Wanli ZHAO,
Hongli SUO,
Min LIU,
Lin MA,
Yinming DAI,
Zili ZHANG.
Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. Chinese Journal of Materials Research, 2021, 35(6): 411-418.
1 |
Fuchs G, Haessler W, Nenkov K, et al. High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder [J]. Superconductor Science and Technology, 2013, 26(12): 122002
|
2 |
Yamamoto A, Shimoyama J I, Ueda S, et al. Synthesis of high(Jc)MgB2 bulks with high reproducibility by a modified powder-in-tube method[J]. Superconductor Science and Technology, 2004, 17(7): 921
|
3 |
Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410(6824): 63
|
4 |
Jung C U, Park M S, Kang W K, et al. Temperature and magnetic field dependent resistivity of MgB2 sintered at high temperature and high pressure condition [J]. Phyisica C, 2001, 353(3): 162
|
5 |
Dancer C E J, Prabhakaran D, Basoglu M, et al. Fabrication and properties of dense ex situ magnesium diboride bulk material synthesized using spark plasma sintering [J]. Superconductor Science and Technology, 2009, 22(9): 095003
|
6 |
Kang D K, Kim D W, Choi S H, et al. Phase Formation of MgB2 Superconducting Materials Fabricated by Spark Plasma Sintering [J]. Metals and Materials International, 2009, 15(1): 15
|
7 |
Tamaki H, Ohashi W, Kitazawa H, et al. Anisotropic grain connectivity in shock consolidated MgB2 bulk samples [J]. Superconductor Science and Technology, 2004, 17(6): 799
|
8 |
Ohashi W, Takenaka K, Kondo T, et al. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB2 samples [J]. Physica C, 2006, 444(1): 5
|
9 |
SpA Edison. Italian Patent Appl [P], US 6302058, 2001
|
10 |
Giunchi G. Conference Proceedings SATT11 [R], Italy: Vietri S M, SA, 2002
|
11 |
Giunchi G, Ceresara S, Ripamonti G, et al. International Workshop BOROMAG [R], Italy: Genova, 2002
|
12 |
Giunchi G. High density MgB2 obtained by reactive liquid Mg infiltration [J]. International Journal of Modern Physics B, 2003, 17(4): 453
|
13 |
Giunchi G, Ceresara S, Ripamonti G, et al. MgB2 reactive sintering from the elements [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 3060
|
14 |
Giunchi G, Raineri S, Wesche R, et al. The voltage-current relations for MgB2 obtained by reactive liquid infiltration [J]. Physica C, 2004, 401(1): 310
|
15 |
Giunchi G, Ginocchio S, Raineri S, et al. High density MgB2 bulk materials of different grains size: supercurrents instability and losses in variable magnetic fields [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 3230
|
16 |
Gozzelino L, Gerbaldo R, Ghigo G, et al. Effects of annealing and nanoparticle doping on electrical properties of MgB2 bulks grown by reactive Mg liquid infiltration technique [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 3524
|
17 |
Giunchi G, Orecchia C, Malpezzi L, et al. Analysis of the minority crystalline phases in bulk superconducting MgB2 obtained by reactive liquid Mg infiltration [J]. Physica C, 2006, 433(4): 182
|
18 |
Giunchi G, Malpezzi L, Masciocchi N. A new crystalline phase of the boron-rich metal-boride family: the Mg2B25 species [J]. Solid State Sciences, 2006, 8(10): 1202
|
19 |
Cavallin T, Young E A, Beduz C, et al. Thermal conductivity of bulk MgB2 produced by infiltration of different boron powders [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2770
|
20 |
Figini Albisetti A, Saglietti L, Perini E, et al. The Mg2B25 formation and its role in the preparation of bulk MgB2 superconductors [J]. Solid State Sciences, 2012, 14(11): 1632
|
21 |
Giunchi G, Ripamontia G, Cavallin T, et al. The reactive liquid Mg infiltrantion process to produce large superconducting bulk MgB2 manufacts [J]. Cryogenics, 2006, 46(2): 237
|
22 |
Giunchi G. MgB2 superconductive inserts:products between bulks and wires [J]. IEEE Transactions On Applied Superconductivity, 2011, 21(3): 1564
|
23 |
Bhagurkar A G, Yamamoto A, Hari Babu N, et al. Synthesis of dense bulk MgB2 by an infiltration and growth process [J]. Superconductor Science and Technology, 2015, 28(1): 015012
|
24 |
Bhagurkar A G, Hari Babu N, Dennis A R, et al. Characterization of Bulk MgB2 Synthesized by Infiltration and Growth [J]. IEEE Transactions On Applied Superconductivity, 2015, 25(3): 6801504
|
25 |
Bhagurkar A G, Yamamoto A, Anguilano L, et al. A trapped magnetic field of 3 T in homogeneous, bulk MgB2 superconductors fabricated by a modified precursor infiltration and growth process [J]. Superconductor Science and Technology, 2016, 29(3): 035008
|
26 |
Bhagurkar A G, Yamamoto A, Dennis A R, et al. Microstructural evolution in infiltration-growth processed MgB2 bulk superconductors [J]. Journal of the American Ceramic Society, 2017, 100(6): 2451
|
27 |
Naito T, Sasaki T, Fujishiro H. A Proposal of new fabricating technique of large MgB2 bulk by a capsule method [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4401703
|
28 |
Naito T, Sasaki T, Fujishiro H. Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method [J]. Superconductor Science and Technology, 2012, 25(9): 095012
|
29 |
Naito T, Ogino A, Fujishiro H. Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by the infiltration-capsule method [J]. Superconductor Science and Technology, 2016, 29(11): 115003
|
30 |
Ogino A, Naito T, Fujishiro H. Optimization of infiltration and reaction process for the production of strong MgB2 bulk magnets [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 6800905
|
31 |
Zhang Z L, Tian M, Ma L, et al. A novel gas-solid reaction process to synthesize low oxygen MgB2 powder using Mg vapour [J]. Superconductor Science and Technology, 2019, 32(1): 015015
|
32 |
Tian M.Synthesis and study on non-oxygen MgB2 powders [D]. Beijing: BeijingUniversity of Technology, 2018
|
32 |
田民. 无氧MgB2粉末的制备及研究 [D]. 北京: 北京工业大学, 2018
|
33 |
Schmitt R, Glaser J, Wenzel T, et al. A reactivity study in the Mg-B system reaching for an improved synthesis of pure MgB2 [J]. Physica C, 2006, 436(1): 38
|
34 |
Matera D, Bonura M, Barth C, et al. Rapid synthesis of MgB2 by inductive heating [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 6200405
|
35 |
Giunchi G, Saglietti L, Ripamonti G, et al. Superconducting joints between MgB2 wires and bulks [J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1524
|
36 |
Luo W H, Huang Z G, Cai X W, et al. MgB2 superconducting joint technique based on mg diffusion method [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 6200805
|
37 |
Rabbers J J, Oomen M P, Bassani E, et al. Magnetic shielding capability of MgB2 cylinders [J]. Superconductor Science and Technology, 2010, 23(12): 125003
|
38 |
Arpaia P, Ballarino A, Giunchi G, et al. MgB2 cylindrical superconducting shielding for cryogenic measurement applications: a case study on DC current transformers [J]. Journal of instrumentation, 2014, 9: P04020
|
39 |
Giunchi G, Turrioni D, Kashikhin V, et al. Feasibility study of a MgB2 superconducting magnetic cloak [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 8801005
|
40 |
Huang Z, Luo W H, Cai X W, et al. Magnetic shielding capability of MgB2 cup made by liquid infifiltration process [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 7000405
|
41 |
Perini E, Giunchi G, Saglietti L, et al. Magnetic field trapping in MgB2 bulks and inserts [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2690
|
42 |
Marignetti F, Cavaliere V, Giunchi G, et al. Use of MgB2 superconductors for excitation field in synchronous machines—part II: Inserts [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(4): 8002606
|
43 |
Patela A, Giunchi G, Figini Albisetti A, et al. High force magnetic levitation using magnetized superconducting bulks as a field source for bearing applications [J]. Physics Procedia, 2012, 36: 937
|
44 |
Patel A, Hopkins S C, Giunchi G, et al. The use of an MgB2 hollow cylinder and pulse magnetized (RE)BCO bulk for magnetic levitation applications [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 6800604
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|