Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 321-328    DOI: 10.11901/1005.3093.2015.468
  本期目录 | 过刊浏览 |
基于动态模量成像的硬化水泥浆体微观物相的识别*
高翔1,2, 魏亚1(), 黄卫2
1. 清华大学土木工程系 土木工程安全与耐久教育部重点实验室 北京 100084
2. 东南大学 教育部智能运输系统研究中心 南京 210096
Phase Identification in Cement Paste by Modulus Mapping
GAO Xiang1,2, WEI Ya1,**(), HUANG Wei2
1. Key Laboratory of Civil Engineering Safety of Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
2. Ministry of Education ITS Engineering Research Center, Southeast University, Nanjing 210096, China
引用本文:

高翔, 魏亚, 黄卫. 基于动态模量成像的硬化水泥浆体微观物相的识别*[J]. 材料研究学报, 2016, 30(5): 321-328.
Xiang GAO, Ya WEI, Wei HUANG. Phase Identification in Cement Paste by Modulus Mapping[J]. Chinese Journal of Materials Research, 2016, 30(5): 321-328.

全文: PDF(3833 KB)   HTML
摘要: 

使用动态力学分析的模量成像技术对硬化水泥净浆进行微观层次上的物相识别, 根据不同物相弹性性质的差异得到了目标区域的储能模量图, 辅以形貌观测、成分分析和原位静态压痕手段, 准确识别了未水化颗粒及其周边的高密度(High density, HD)和低密度(Low density, LD)CSH凝胶。结果表明, HD CSH凝胶和LD CSH凝胶的化学成分一致, 其各自的典型动态模量分别为36GPa和24GPa, 具有较好的区分度, 且该值与同样表征物相弹性性质的压痕模量数值近似, 动态模量成像图可给出清晰的物相边界。用该方法分析硬化水泥浆体微观性能, 可避免由于不能准确定位各物相而引起盲目性和重复工作, 有助于有的放矢地研究目标物相。

关键词 无机非金属材料硬化水泥浆体动态力学分析模量成像物相识别CSH凝胶储能模量    
Abstract

Phases in cement paste can be identified in micro scale by dynamic mechanical analysis (DMA) based modulus mapping owing to the characteristics of this technique: rapid, precise, high resolution and non-destructive. According to the storage modulus mapping which reflects the differences of elastic properties, the unhydrated clinker, as well as the high density calcium silicate hydrate (CSH) gel and low density CSH gel, which surrounded the clinker can be recognized with the assistance of morphology observation, components analysis and in-situ static indentation etc. Results show that the chemical composition of HD CSH and LD CSH is the same, while their storage modulus are 36GPa and 24GPa respectively, and the phase identification can be accomplished by taking the individual storage modulus into account. Therefore, blindness and repetition in traditional experiments can be avoided by employing the method of DMA-based modulus mapping, and then the properties of interested phase can be acquired with targeted approach.

Key wordsinorganic non-metallic materials    cement paste    dynamic mechanical analysis    modulus mapping    phase identification    CSH gel    storage modulus
收稿日期: 2015-08-20     
ZTFLH:  TB321  
基金资助:* 国家自然科学基金51578316资助项目
作者简介: 本文联系人: 魏 亚
图1  动态纳米压入原理示意图
图2  典型荷载-压入深度曲线
Al2O3 Fe2O3 CaO MgO SO3 SiO2 Na2Oeq
4.03 3.46 61.5 2.60 2.83 21.58 0.51
表1  原材料化学组成(质量分数, %)
图3  AFM拍摄试件表面粗糙度
图4  动态模量图像及光镜图、形貌图和三维图
图5  纵线上储能模量随位置的变化
Phase Average of storage modulus / GPa Range of storage modulus / GPa Indentation
modulus / GPa
line 1 line 2 Line3 Line4
HD CSH 35.23 36.26 35.57 35.07 26-49 36.1
LD CSH 24.42 23.23 23.53 24.92 18-32 23.7
表2  纵线上两相水化产物储能模量值对比
图6  研究区域(约30 μm×30 μm)形貌图及EDS/NI试验示意图
图7  静态压入点的力学特征及其与储能模量的对照
图8  各物相中主要元素占比
图9  EDS测试的Ca/Si比
1 F. J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, C. Ortiz, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, Journal of the American Ceramic Society, 90(9), 2677(2007)
2 P. Trtik, B. Münch, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments, Cement and Concrete Composites, 31(10), 705(2009)
doi: 10.1016/j.cemconcomp.2009.07.001
3 J. J. Chen, L. Sorelli, M. Vandamme, F. J. Ulm, G. Chanvillard, A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C-S-H/Ca (OH) 2 nanocomposites, Journal of the American Ceramic Society, 93(5), 1484(2010)
4 C. Hu, Microstructure and mechanical properties of fly ash blended cement pastes, Construction and Building Materials, 73, 618(2014)
5 YI Nan, GU Yizhuo, LI Min, ZHANG Zuoguang, Characterization on topography and dimension of the interphase structure in carbon fiber composites, Acta Materiae Compositae Sinica, 27(5), 36(2010)
5 (易楠, 顾轶卓, 李敏, 张佐光, 碳纤维复合材料界面结构的形貌与尺寸的表征, 复合材料学报, 27(5), 36(2010))
6 G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. S. Asif, M. Balooch, Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth, Journal of Biomechanics, 37(8), 1223(2004)
doi: 10.1016/j.jbiomech.2003.12.012
7 P. S. Uskokovic, C. Y. Tang, C. P. Tsui, N. Ignjatovic, D. P. Uskokovic, Micromechanical properties of a hydroxyapatite/poly-L-lactidebiocomposite using nanoindentation and modulus mapping, Journal of the European Ceramic Society, 27(2), 1559(2007)
8 P. Schön, K. Bagdi, K. Molnár, P. Markus, B. Pukánszky, G. J. Vancso, Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM, European Polymer Journal, 47(4), 692(2011)
doi: 10.1016/j.eurpolymj.2010.09.029
9 W. Li, S. Kawashima, J. Xiao, D. J. Corr, C. Shi, S. P. Shah, Comparative investigation on nanomechanical properties of hardened cement paste, Materials and Structures, 1(2015)
10 J. Xu, D.J. Corr, S. P. Shah, Nanomechanical properties of CSH gel/cement grain interface by using nanoindentation and modulus mapping, Journal of Zhejiang University Science A, 16(1), 38(2015)
11 M. Miller, C. Bobko, M. Vandamme, F. Ulm, Surface roughness criteria for cement paste nanoindentation, Cement and Concrete Research, 38(4), 467(2008)
doi: 10.1016/j.cemconres.2007.11.014
12 Y. Zhang, S. Bai, M. Miao, Y. Jin, Microstructure and mechanical properties of an alumina-glass low temperature co-fired ceramic, Journal of the European Ceramic Society, 29(6), 1077(2009)
doi: 10.1016/j.jeurceramsoc.2008.07.056
13 H. M. Jennings, Refinements to colloid model of CSH in cement: CM-II, Cement and Concrete Research, 38(3), 275(2008)
doi: 10.1016/j.cemconres.2007.10.006
14 M. Vandamme, F. Ulm, Nanogranular origin of concrete creep, Proceedings of the National Academy of Sciences, 106(26), 10552(2009)
15 LV Peng, ZHAI Jianping, NIE Rong, LV Huifeng, Investigation on the early stage hydration of portland cement using enviromental scanning electron microscopy, Journal of the Chinese Ceramic Society, 32(04), 530(2004)
15 (吕鹏, 翟建平, 聂荣, 吕慧峰, 环境扫描电镜用于硅酸盐水泥早期水化的研究, 硅酸盐学报, 32(04), 530(2004))
16 A. J. Allen, J. J. Thomas, H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nature materials, 6(4), 311(2007)
17 LIU Renguang, HAN Fanghui, YAN Peiyu, Characteristics of two types of C-S-H gel in hardened complex binder pastes blended with slag, Sci. China Tech. Sci., 8(43), 912(2013)
17 (刘仍光, 韩方晖, 阎培渝, 纳米压痕研究含矿渣硬化浆体C-S-H 凝胶的特性, 中国科学: 技术科学, 8(43), 912(2013))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.