Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 161-170    DOI: 10.11901/1005.3093.2015.188
  本期目录 | 过刊浏览 |
从生物能量学和生物电化学角度研究金属微生物腐蚀的机理*
夏进1, 徐大可2(), 南黎2, 刘宏芳3, 李绮1, 杨柯2
1. 辽宁大学化学院 沈阳 110036
2. 中国科学院金属研究所 沈阳 110016
3. 华中科技大学化学与化工学院 武汉 430074
Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of Bio-electrochemistry and Bio-energetics
XIA Jin1, XU Dake2,**(), NAN Li2, LIU Hongfang3, LI Qi1, YANG Ke2
1. College of Chemistry, Liaoning University, Shenyang 110036, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

夏进, 徐大可, 南黎, 刘宏芳, 李绮, 杨柯. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理*[J]. 材料研究学报, 2016, 30(3): 161-170.
Jin XIA, Dake XU, Li NAN, Hongfang LIU, Qi LI, Ke YANG. Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of Bio-electrochemistry and Bio-energetics[J]. Chinese Journal of Materials Research, 2016, 30(3): 161-170.

全文: PDF(1658 KB)   HTML
摘要: 

人类认知由微生物导致的金属腐蚀现象距今已有一个多世纪的历史.最近20年, 微生物腐蚀(Microbiologically influenced corrosion, MIC) 已成为金属腐蚀的一个研究热点.因为缺乏对MIC机理的深入了解和认识, 人们甚至认为MIC是腐蚀领域中的一个"谜".因此, 迫切需要了解MIC的发生机理.最新的研究结果表明, 金属的微生物腐蚀在本质上是一个生物电化学过程.在微生物与金属并存的环境中, 当电子供体(如碳源)不存在或消耗掉之后, 微生物用金属代替碳源获取电子, 导致金属发生微生物腐蚀.另外一种腐蚀机理是, 微生物的代谢产物(比如有机酸)导致金属腐蚀.腐蚀是一个能量释放的反应过程, 微生物通过腐蚀金属得到维持其生命所必需的能量.目前, 电化学方法已应用于微生物金属腐蚀研究, 学者们提出了诸如"阴极去极化"等经典理论.但单纯从电化学角度研究微生物腐蚀金属可能得到一些片面的结论.随着对这一领域研究的不断深入人们认识到必须结合生物能量学以及生物电化学方面的知识, 以更好地理解微生物影响金属腐蚀的进程.本文总结这方面的最新研究进展, 并着重介绍"生物催化阴极还原"理论(Biocatalytic cathodic sulfate reduction, BCSR)和"电化学微生物腐蚀"理论(Electrical microbial influenced corrosion, EMIC)等最新的金属微生物腐蚀机理.本文主要从生物能量学和生物电化学方面介绍金属微生物腐蚀机理研究, 这是目前国际上一种新的研究方法和思路.BCSR就是依据这一思路解释了微生物为什么和怎样腐蚀金属这一MIC研究领域中的这一难题.

关键词 材料失效与保护微生物腐蚀硫酸盐还原菌生物膜生物能量学细胞外电子传递    
Abstract

People realized that microbes can cause serious microbiologically influenced corrosion (MIC) attack on metals since a century ago. In the past 20 years, the research relevant to MIC became more and more important due to severe damages and huge economic losses caused by microorganisms. Due to a lack of understanding, MIC has even been considered to be a "myth" in the field of corrosion, therefore, a theory which can cogently explain MIC phenomena is needed. The latest research result indicated that MIC is a bioelectrochemical process in essence. When the organic carbon is not available or fully consumed, metal such as iron would replace organic carbons as an electron donor for microorganisms, resulting in the occurrence of MIC. In addition, another theory related with the mechanism of MIC is that microbes could secrete corrosive metabolites such as organic acids. It is well known that corrosion is an exergonic process, and the microorganisms would utilize the energy released by the corrosion of metal to obtain their maintenance energy. Currently, electrochemical methods are widely used in MIC research, and the classical cathodic depolarization theory (CDT) was proposed based on electrochemistry. However, if only from the perspective of the electrochemistry, many phenomena of MIC can not be cogently explained. Researchers realized that the knowledge of bioenergetics and bioelectrochemistry may be the key to better understand the interactions between microorganisms and metals and then the process of MIC. This review is to summarize the recent works, and introduce the latest theories concerning the mechanism of MIC emphatically, such as biocatalytic cathodic sulfate reduction (BCSR) and electrical microbial influenced corrosion (EMIC). The introduction of the novel perspective to study MIC from bioenergetics and bioelectrochemistry is also provided in this review. Based on bioenergetics and bioelectrochemistry, the BCSR theory can cogently explain how and why MIC happens, which has been a long-term unsolved research problem.

Key wordsmaterials failure and protection    microbiologically influenced corrosion (MIC)    sulfate-reducing bacteria (SRB)    biofilm    bio-energetics    extracellular electron transfer
收稿日期: 2015-04-07     
ZTFLH:  TG171  
基金资助:* 国家自然科学基金51501203和中国科学院金属研究所所优秀学者支持资助项目
作者简介: 徐大可
图1  异化硫酸盐的还原作用("硫酸呼吸")[34](载体蛋白(Carrier protein, CP); 三磷酸腺苷硫酸化酶(Adenosine triphosphate sulfurylase, ATPS); 焦磷酸水解酶(Pyrophosphoric acid hydrolase, PAH); 亚硫酸盐还原酶(Sulphite reductase, SR); 腺苷硫酸盐还原酶(Adenosine phosphosulphate reductase, APR))
图2  SRB腐蚀金属的三种电子转移方式[58]
Fig.3  Electron transfer chain and standarded electrode potential distribution of related electroxhemical reactions for SRB corrosion of metals[85]
图4  多孔SRB-生物膜和内嵌的磁铁矿简图[81]
1. U. S.Geological survey, Mineral commodity summary 2011: U. S. Geological survey, R, 2011. URL
2. G. H. Koch, M. P. H. Brongers, N. G. Thomposn, Y. P. Virmani, J. H. Payer, Corrosion cost and preventive strategies in the United States,R,FHWA-RD-01-156(2011)
3. J. Kruger, In Uhlig's Corrosion Hangbook, Cost of metallic corrosion, Edited by R. W. Revie(Ney Jersy, Willey, 2011) p.15
4. JIANG Bo, DU Cuiwei, The research progress of typical microbial corrosion, Petrochemical Corrosion and Protection, 25(4), 1(2008)
4. (蒋波, 杜翠薇, 典型微生物腐蚀的研究进展, 石油化工腐蚀与防护, 25(4), 1(2008))
5. YUAN Bin, LIU Guichang, CHEN Yie, The research overview of material microbiological corrosion, Material Protection, 38(4), 38(2005)
5. (袁斌, 刘贵昌, 陈野, 材料微生物腐蚀的研究概况, 材料保护, 38(4), 38(2005))
6. LI Yu, YU Hongwei, WEI Zheng, WANG Yuansheng, Microbiologically influenced corrosion in aviation fuel and its protection measures, Guangzhou Chemical Industry, 41(7), 27(2013)
6. (李瑜, 余红伟, 魏徵, 王源升, 航空燃料系统微生物危害及防护, 广州化工, 41(7), 27(2013))
7. GU Caixiang, ZHU Guanjun, LI Wei, TIAN Xiaoyu, DING Shudan, The corrosion and protection measures of ship, Ship Engineering, 32(3), 1(2010)
7. (顾彩香, 吉贵军, 朱冠军, 李伟, 田晓禹, 丁树丹, 船舶的腐蚀与防护措施, 船舶工程, 32(3), 1(2010))
8. GONG Min, YU Zuxiao, CHEN Lin, The theory of metal corrosion and corrosion control, 3rd ed., (Beijing, Chemical Industry Press, 2013) p.1
8. (龚敏, 余祖孝, 陈琳, 金属腐蚀理论及腐蚀控制, 第3版, (北京, 化学工业出版社, 2013)p.1)
9. D. Enning, J. Garrelfs, Corrosion of iron by sufate-reducing bacteria: new views of an old problem, Applied and Environmental Microbiology, 80(4), 1226(2014)
10. P. Y. Zhang, D. K. XU, Y. C. Li, K. Yang, T. Y. Gu, Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm, Bioelectrochemistry, 101, 14(2015)
11. A. Grigoryan, G. Voordouw, Microbiology to help solve our energy needs:methanogenesis from oil and the impact on the oil-field sulfur cycle, Annals of the New York Academy Sciences, 1125, 345(2008)
12. A. A. Grigoryan, S. L. Cornish, B. Buziak, S. Lin, A. Cavallaro, J. J. Arensdorf, G. Voordouw, Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentia, Applied and Environmental Microbiology, 74(14), 4324(2008)
13. G. Harms, K. Zengler, R. Rabus, F. Aeckersberg, D. Minz, R. RosselloMora, F. Widdel, Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria, Applied and Environmental Microbiology, 65(3), 999(1999)
14. C. Chen, R. T. Taylor, Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria, Applied Microbiology Biotechnology, 48(1), 121(1997)
15. L. M. Gieg, I. A. Davidova, K. E. Duncan, J. M. Suflita, Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields, Environmental Microbiology, 12(11), 3074(2010)
16. I. A. Davidova, K. E. Duncan, O. K. Choi, J. M. Suflita, Desulfoglaeba alkanexedens gen. nov., sp. Nov., an n-alkane-degrading, sulfate-reducing bacterium, International Journal of Systematic and Evolutionary Microbiology, 56, 2737(2006)
17. F. Widdel, T. A. Hansen,In The Prokaryotes, The dissmilatory sulfate-reducing bacteria, Edited by A .Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schleifer(New York, Springer-Verlag, 1992) p.3379
18. F. Widdel, In Biology of Anaerobic Microorganisms. Ecological and Applied Microbiology, Microbiology and ecology of sulfate-reducing bacteria, Edited by A.J. B. Zehnder(Munich, Carl Hanser Verlag, 1988) p.469
19. R. Rabus, T. A. Hansen, F. Widdel, In The Prokaryotes, Dissimilatory sulfate-reducing and sulfur-reducing prokaryotes, Edited by S. Doworkin, E. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt (Berlin,Springer, 2006) p.659
20. N. Pfennig, Metabolic diversity among the dissmilatory sulfate-reducing bacteria, Antonie Van Leeuwenhoek, 56(2), 127(1989)
21. B. Ollivier, J. L. Cayol, G. Fauque, In Sulphate-Reducing Bacteria-Environmental and Engineered Systems, Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents, Edited by L. L. Barton, W. Hamilton(UK, Cambridge University Press, 2007) p.305
22. J. LeGall, G. Fanque, In Biology of anaerobic Microorgansims, Dissimilatory reduction of sulfur compounds, Edited by A. J.B. Zehnder(New York, Willey, 1988) p.587
23. L. L. Keller, J. D. Wall, S. Chhabra, Methods for engineering sulfate-reducing bacteria of the genus Desulfovibrio, Methods in Enzymology, 497, 503(2011)
24. L. L. Keller, J. D. Wall, Genetics and molecular biology of the electron flow for sulfate respiration in Desulfvibrio, Frontiers in Microbiology, 2, 135(2011)
25. G. D. Fauque, J. LeGall, L. L. Barton,In Variations Autotrophic Life, Sulfur-reducing bacteria, Edited by J. M. Shively, L. L. Barton(London, Academic Press Limited, 1991) p.271
26. G. Faque, B. Ollivier, In Microbial Diversity and Bioprospecting, Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity, Edited by A. T.Bull(Washington DC, ASM Press, 2004) p.169
27. G. D. Faque, In Sulfate-Reducing Bacteria. Biotechnology Handbook, Ecology of sulfate-reducing bacteria, Edited by L. L. Barton(New York, Plenum Press, 1995) p.217
28. L. L. Barton, G. D. Faque, Biochemistry, Physiology and biotechnology of sulfate-reducing bacteria, Advances in Applied Microbiology, 68, 41(2009)
29. H. D. Jr.Peck, The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans, Proceedings of the National Academy Sciences, 45(5), 701(1959)
30. G. D. Fague, L. L. Barton, Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes, Advances in Microbial physiology, 60, 1(2012)
31. J. Lampreia, G. Fauque, N. Speich, C. Dahl, I. Moura, H. G. Trüer, J. J. G.Moura, Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus, Biochemical and Biophysical Research Communications, 181(1), 342(1991)
32. J. Lampreia, A. S. Pereira, J. J. G.Moura, Adenylylsulfate reductases for sulfate-reducing bacteria, Methods in Enzymology, 243, 241(1994)
33. A. Lopez-Cortès, S. Bursakow, A. Figueiredo, A. E. Thapper, S. Todorovic, J. J. G.Moura, B. Ollivier, I. Moura, G. Faque, Purification and preliminary characterization of tetraheme cytochrome c3 and adenylylsulfate reductase form the peptidolytic sulfate-reducing bacterium Desulfovibrio aminophilus, Bioinorganic Chemistry Applications, 3(1-2), 81(2005)
34. G. H. Schlegel,Translated by LU Weiping,ZHOU Deqing, GUO Yanjie, MEI Baigen, General Microbiology ( Shanghai, Fudan University Press, 1990) p.305
34. (G. H.Schlegel著, 陆卫平, 周德庆, 郭杰炎, 梅百根译, 普通微生物学(上海, 复旦大学出版社, 1990)p.305)
35. T. Y. Gu, New understandings of biocorrosion mechanisms and their classifications, Journal of Microbial & Biochemical Technology, 4, 3(2012)
36. T. Y. Gu, D. K. Xu, Carbon source starvation triggered more aggressive carbon steel by the desulfovibrio vulgaris biofilm, International Biodeterioration & Biodegradation, 91, 74(2014)
37. T. Y. Gu, D. K. Xu,"Why are some microbes corrosive and somenot?", C,NACE-0002336(2013)
38. D. K. Xu, T. Y. Gu,"Bioenergetics explains when and why more servere MIC pitting by SRB can occur?", C,NACE-11426(2011)
39. T. Y. Gu, D. K. Xu, "Demystifying MIC mechanisms", C,NACE-10213(2010)
40. H. Videla, L. K. Herrera, Microbiologically influenced corrosion:.Looking to the future, International Microbiology, 8, 169(2005)
41. D. Monroe, Looking for chinks in the armor of bacterial biofilms, Plos Biology, 5(11), 2458(2007)
42. H. Castaneda, X. D. Benetton, SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions, Corrosion Science, 50(4), 1169(2008)
43. QI Hanying, WANG Wenbin, ZHENG Yu, ZHU Liang, XU Xiangyang, Mechanism of biofilm formation and analysis of influencing factors, Microbiology China, 40(4), 677(2013)
43. (戚韩英, 汪文斌, 郑昱, 朱亮, 徐向阳, 生物膜形成机理及影响因素探究, 微生物学通报, 40(4), 677(2013))
44 B. K. Chastain, T. A .Kral, Zero-valent iron on Mars: An alternative energy source for methanogens, Icarus, 208(1), 198(2010)
45 S. Biswas, P. Bose, Zero-valent iron-assisted autotrophic denitrification, Journal of Environmental Engineering, 131(8), 1212(2005)
46 O. J. Hao, Disscusition of Modeling of anaerobic corrosion influenced by sulfate-reducing bacteria, Water Environment Research, 67(5), 875(1995)
47 Y. J. Chen, Q. Tang, J. M. senko, G. Chen, B M. Z. Newby, H. Castaneda, L K. Ju, Long-term survival of Desulfovibrio vulgaris on carbon steel and pitting corrosion, Corrosion Science, 90, 89(2015)
48 Y. J. Chen, R. Howdyshell, S. howdyshell, L K. Ju, Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness, Corrosion, 70(8), 767(2014)
49 V. W. Kuhr, C. A. H., L. S. v. d. Vlugt, The graphitization of cast iron as an electrobiochemical process in anaerobic soil, Water, 18(16), 147(1934)
50 W. P. Iverson, Direct evidence for cathodic depolarization theory of bacterial corrosion, Science, 151(3713), 986(1966)
51 G. H. Booth, A. K. Tiller, Cathodic characteristics of mild steel in suspensions of sulfate-reducing bacteria, Corrosion Science, 8, 583(1968)
52 J. A. Costello, Cathodic depolarization by sulphate-reducing bacteria, South African Journal of Science, 70(7), 202(1974)
53 I. Pankhania, I. Moosavi, W. Hamilton, Utilization of cathodic hydrogen by Desulfvibrio vulgaris(Hidenborough), Microbiology, 132(12), 3357(1986)
54 D. K. Xu, Y. C. Li, F. M. Song, T. Y. Gu, Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate bacterium Bacillus licheniformis, Corrosion Science, 77, 385(2013)
55 F. Aulenta, A. Catervi, M. Majone, S. Panero, P. Reale, S. Rossetti, Electron transfer from a solid-state electrode assisted by methyl-viologen sustains efficient microbial reductive dechlorination of TCE, Environmental Science & Technology, 41, 2554(2007)
56 K. M. Usher, Critical review: Microbially influenced corrosion of buried carbon steel pipes, International Biodeterioration & Biodegradation, 93, 84(2014)
57 C. I. Torres, A. K. Marcus, H Lee, P. Parameswaran, R. Krajmalnik-Brown, B. E. Rittmann, A kinetic perspective on extracellular electrons transfer by anode-respiring bacteria, FEMS Microbiology Reviews, 34(1), 3(2010)
58 T. Gu, D. Xu, P. Zhang, Y. Li, A. L. Lindenberger, In Microbiology for Minerals Metals, Materials and Environment, Microbiologically influenced corrosion and its impact on metal and other materials, Edited by S. S. Abhilash, B. D. Pandey, K. A. Natarajan(Florida, CRC Press, 2015) p. 383
59 C. R. Myers, K. H. Nealson, Bacterial manganese reduction and growth with managense oxide as the sole electron acceptor, Science, 240, 1319(1988)
60 D. R. Lovely, E. J. P.Phillips, Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron on manganese, Applied & Environmental Microbiology, 54(6), 1472(1988)
61 K. Rabeay, L. Angenent, U. SchrÖder, J. Keller, Translated by WANG Aijie, REN Nanqi, TAO Chunhu,Bioelectrochemical Systems: From extracellular electron transfer to biotechnological application (Beijing, Science Press, 2011) p.63
61 (K. Rabeay, L. Angenent, U. SchrÖder, J. Keller著,王爱杰, 任南琪, 陶春虎译, 生物电化学系统: 从胞外电子传递到生物技术应用(北京, 科学出版社, 2011)p.63)
62 C. G. Mowat, S. K.Chapman, Multi-heme cytochromes-new structure, new chemistry, Dalton Transactions, 21, 3381(2005)
63 T. Mehta, M. V. Coppi, S. E. Childers, D. R. Lovely, Outermembrane c-type cytochromes required for Fe(Ⅲ) and (Ⅳ), Oxide reduction in geobacter sulfurreducens, Applied And Enviromental Microbiology, 71(12), 8634(2005)
64 E. Lojou, M. T.Giudici-Orticoni, P. Bianco, Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c3 incorporated in clay films, Journal of Electroanalytical Chemistry, 579, 199(2005)
65 J. A. Gralnick, D. K. Newman, Extracellular respiration , Molecular Microbiology, 65(1), 1(2007)
66 J. Kaden, A. S. Galushko, B. Schink, Cysteine-mediated electron transfer in syntrophic acetate oxidiation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes, Archives of Microbiology, 178(1), 53(2002)
67 G. Reguera, K. D. Mccarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovely, Extracellular electron transfer via microbial nanowires, Nature, 435(7045), 1098(2005)
68 Y. A. Gorby, S. Yanina, J. S. Mclean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. kennedy, G. Pinchuk, K. Watanabe, S. I. Ishii, B. Logan, K. H. Nealson, J. K. Fredrichson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis Strain MR-1 and other Microorganisms, Proceedings of The National Academy of Sciences, 103(30), 11385(2006)
69 B. Erable, N. M. Duteanu, M. M. Ghangrekar, C. Dumas, K. Scott, MInireview: application of electro-active biofilms, Biofouling, 26(1), 57(2010)
70 D. R. Lovely, Electrochemistry, Aunnual Review of Biochemistry, 66, 391(2012)
71 N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B. C. Kim, K. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovely, Tunable metallic-like conductivity in microbial nanowire networks, Nature Nanotechnology, 6, 573(2011)
72 A. E. Rotaru, P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, D. R. Lovely, A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane, Energy& Environmental Science, 7(1), 408(2014)
73 C. Leang, N. S. Malvankar, A. E. Franks, K. P. Nevin, D. R. Lovely, Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production, Energy & Environmental Science, 6(6), 1901(2013)
74 M. Vargas, N. S. Malvankar, P. L. Tremblay, C. Leang, J. A. Smith, P. Patel, O. Synoeyenbos-West, K. P. Nevin, D. R. Lovely, Aromatic amino acids required for pili conductivity and long range extracellular electron transport in Geobacter Sulfurreducens, MBio, 4(2), 1(2013)
75 M. Zhou, H. Wang, D. J. Hassett, T. Gu, Recent advances in Microbial fuel cells(MFCS) and microbial electrolysis cells (MSCS) for wastewater treatment, Bioenergy and Bioproducts, Journal of Chemical Technology and Biotechnology, 88(4), 508(2013)
76 G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, S. J. Caldwell, D. E. Caldwell, Multicellular organization in a degradative biofilm community, Applied and Environment Microbiology, 60(2), 434(1994)
77 G. O'Toole, H. B. Kaplan, R. kolter, Biofilm formation as microbial development, Annual Review of Microbiology, 54, 49(2000)
78 E. S.McLeod, R. Macdonald, V. S. Brozel, Distribution of shewanella putrefaciens and desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridization, Water SA, 28, 123(2004)
79 G. A. James, L. Beaudette, J. W. Costerton, Interspecies bacterial intersations in biofilms, Journal of Industrial Microbiology & Biotechnology, 15(4), 257(1995)
80 F. L. XU, J. Z. Duan, B. R. Hou, Electron transfer process from marine biofilms to graphite electrode in seawater, Bioelectrochemistry, 78(1), 92(2010)
81 Y. Lin, J. Z. Duan, W. Zhao, Y. L. Huang, B. R. Hou, Charactersitics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoninsis biofilm on pyrolytic graphite electrode, Electrochimica Acta, 56(26), 9041(2011)
82 Y. Lin, J. Z. Duan, X. Q. Du, Y. L. Huang, B. R. Hou, Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry, Electrochemistry Communications, 26, 101(2013)
83 YE Qin, LI Kejuan, GUO Peipei, LIU Hongfang, Evolution of SRB biofilm and its influence on corrosion of Q235 carbon steel in oilfield sewage, Corrosion Science and Protection Technology, 25(3), 196(2013)
83 (叶琴, 李克娟, 郭佩佩, 刘宏芳, 油田污水中碳钢表面生物膜生长规律及腐蚀电化学行为, 腐蚀科学与防护技术, 25(3), 196-201(2013))
84 D. Enning, H. Venzlaff, J. Garrelfs, H. Dinh, V. Meyer, K. Mayrhofer, A. W. Hassel, M. Stratmann, Widdel F, Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic crust, Environmental Microbiology, 14(7), 1772(2012)
85 H. Venzlaff, D. Enning, J. Srinivasan, K. J. J.Mayrhofer, A. W. Hassel, F. Widdel, M. Stratmann, Accelerated Cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corrosion Science, 66, 88(2013)
86 G. H. Booth, L. Elford, D. Wakerley, Corrosion of mild steel by sulphate-reducing bacteria: an alternative mechanism, British Corrosion Journal, 3(5), 242(1968)
87 R. A. King, J. D. A.Miller, Corrosion by Sulphate-Reducing bacteria, Nature, 233, 491(1971)
88 J. S. Smith, J. D. A.Miller, Nature of sulphides and their corrosive effect on ferrous metals: a review, British Corrosion Journal, 10(3), 136(1975)
89 S. J. Yuan, S. O. Pehkonen, Y. P. Ting, E. T. Kang, K. G. Neoh, Corrosion behavior of type 304 stainless steel in a simulated sweater-based medium in the presence and absence of aerobic Psedomonas NCIMB 2021 bacteria, Industrial & Engineering Chemistry Research, 47(9), 3008(2008)
90 H. Castaneda, X D. Benetton, SRB-biofilm influence in active corrosion sites formed at steel-electrolyte interface when exposed to artificial seawater conditions, Corrosion Science, 50, 1169(2008)
91 L. R. Bairi, R. P. George, U. K. Mudali, Microbially induced corrosion of D9 stainless steel-zirconium metal waste form alloy under simulated geological repository, Corrosion Science, 61, 19(2012)
92 Z. H. Dong, W. Shi, H. M. Ruan, Heterogeneous corrosion of mild steel under SRB-biofilm characterized by electrochemical mapping technique, Corrosion Science, 53, 2978(2011)
93 H-C.Flemming, P. S. Murthy, R. Venkatesan, K.Cooksey, In Springer Series on Biofilms, Marine and industrial Biofouling, Edited by J. W. Costerton(Heidelberg, Springer-Verlag, 2009) p.1-118
94 LIU Bin, DUAN Jizhou, HOU Baorong, Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater, Journal of Chinese Society for Corrosion and Protection, 32(1), 49(2012)
94 (刘彬, 段继周, 侯保荣, 天然海水中生物膜对316L不锈钢腐蚀行为研究, 中国腐蚀与防护学报, 32(1), 49(2012))
95 DUAN Zhi, LI Songmei, DU Juan, LIU Jianhua, Corrosion behavior of Q235 steel in the presence of Pseudomonas and Iron Bacteria, Acta Physico-Chimica Sinica, 26(12), 3203(2010)
95 (段治, 李松梅, 杜鹃, 刘建华, Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为, 物理化学学报, 26(12), 3203(2010))
96 M. Moradi, Z. L. Son, L. J. Yang, J. J. Jiang, J. He, Effect of marine Pseudoalteromonas sp. On the microstructure and corrosion behaviour of 2205 duplex stainless steel, Corrosion Science, 84, 103(2014)
97 J. Xu, K. X. Wang, C. Sun, F. H. Wang, X. M. Li, J. X. Yang, C. K. Yu, The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbanded coating by using electrochemical impedance spectroscopy, Corrosion Science, 53, 1562(2011)
98 M. Moradi, J. Duan, H. Ashassi-Sorkhabi, L. Xuan, De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria, Corrosion Science, 53, 4282(2011)
99 C. Sun, J. Xu, F. H. Wang, Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm, Industrial & Engineering Chemistry Research, 50, 12797(2011)
100 CAO Chunan, Principles of electrochemistry of corrosion,3rd ed., (Beijing, Chemical Industry Press, 2008) p.216
100 (曹楚南,腐蚀电化学原理, 第3版, ( 北京, 化学工业出版社, 2008)p.216)
101 B. J. Little, J. S. Lee, R. I. Bay, The influence of marine biofilms on Corrosion: A concise review, Electrochimica Acta, 54(1), 2-7(2008)
102 M. E. Lai, A. Bergel, Direct electrochemistry of catalase on glassy carbon electrodes, Electrochemistry, 55(1-2), 157(2002)
103 N. Washizu, Y. Katada, T. Kodama, Role of H2O2 in microbially influence ennoblement of open circuit potentials for type 316L stainless steel in seawater, Corrosion Science, 46, 1291(2004)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.