Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 149-155    DOI: 10.11901/1005.3093.2015.403
  本期目录 | 过刊浏览 |
覆冰工况下电力导线非对称疲劳失效的数值模拟分析
白茹1, 蔡钢2, 张晓敏2, 陈文骐1, 蒋渝1()
1. 四川大学材料科学与工程学院 成都 610000
2. 国网四川省电力公司电力科学研究院 成都 610072
Numerical Simulation Analysis of Asymmetric Fatigue Failure for Iced Electric Power Transmission Line
BAI Ru1, CAI Gang2, ZHANG Xiaomin2, CHEN Wenqi1, JIANG Yu1,*()
1. College of Material Science and Engineering , Sichuan University Chengdu 610000, China
2. State Grid Sichuan Electric Power Research Institute, Chengdu 610072, China
引用本文:

白茹, 蔡钢, 张晓敏, 陈文骐, 蒋渝. 覆冰工况下电力导线非对称疲劳失效的数值模拟分析[J]. 材料研究学报, 2016, 30(2): 149-155.
Ru BAI, Gang CAI, Xiaomin ZHANG, Wenqi CHEN, Yu JIANG. Numerical Simulation Analysis of Asymmetric Fatigue Failure for Iced Electric Power Transmission Line[J]. Chinese Journal of Materials Research, 2016, 30(2): 149-155.

全文: PDF(2085 KB)   HTML
摘要: 

2011年四川西昌地区月普一回线在覆冰气象条件下发生断线事故.基于现场调查资料, LGJ-630/45钢芯铝绞线截面上的12根铝线为平齐的脆断断口, 其余均为典型韧断断口.本文基于有限元法的ANSYS计算平台, 从悬垂线和大挠度弯曲梁单元模型的静力学角度及梁单元模型的动力学角度分析了断线原因.研究表明: 事故现场采集的脆性平断断口系疲劳所致, 导线先因疲劳产生低应力脆断平断口, 引起有效截面减小, 继而发生应力过载断裂, 产生杯锥状韧性断口.事故发生原因为覆冰及脉动风使导线运行应力由55.4 MPa增至97.9 MPa.在脉动风作用下, 导线发生一阶共振, 促使非对称疲劳的疲劳载荷应力均值增大, 大大降低了导线的疲劳寿命, 部分铝线发生断股, 引起导线有效截面减小, 使其运行应力超过导线破坏应力, 最终导致导线过载韧断.

关键词 材料失效与保护导线断线低应力脆断过载韧断非对称疲劳疲劳寿命    
Abstract

Accident of icing induced line break occurred for the electric power transmissionline connecting Yucheng to Pugein the winter of 2011. Based on the observation and measured data, a broken section of the LGJ-630/45-type power line of stranded aluminum wires with steel core exhibited 12 broken aluminum wires with typical brittle fracture characteristics, but the rest wires were ductile fractured. On the basis of the theory of statics and dynamics of catenary beam element mode and large deflection bending beam element mode, the line breaking was analyzed by using ANSYS finite element method. Results show that the brittle fracture of 12 broken wires may be caused by fatigue, then the effective section of power line decreases, which further caused the rest wires to be broken due to overload. Icing and fluctuating wind lead the stress of the operating power line to be increased from 55.4 MPa to 97.9 MPa, which is the main cause to the line breaking. The power line resonate induced by the fluctuating wind, thus the mean stress of asymmetric fatigue increases, , and the fatigue life of the line significant decreases. Corresponding to all the above considerations, the realstress of the operating line increases from 97.9 MPa to 275.2 MPa and thereby the ductile fracture occurs due to that the real stress exceeded the failure stress of 221 MPa of the operating line.

Key wordsmaterials failure and protection    lead break    brittle fracture    ductile fracture    asymmetric fatigue    fatigue life
收稿日期: 2015-07-13     
ZTFLH:  TG430  
作者简介: 通讯作者:蒋渝
Parameters Value
Type LGJ-630/45
H/m 2700
L/m 280
D/m 0.0338
m/kgkm-1 2079.2
E/MPa 69000
α/℃-1 11.8×10-6
Operating stress/MPa 55.2
Failure stress/MPa 221
表1  导线特性参数[5]
图1  耐张段断面示意图及62#杆塔上相和下相挂点处导线的断头示意图[1]
图2  导线断口
图3  导线运行应力随覆冰厚度变化曲线
图4  导线运行应力随风速变化曲线
图5  导线运行应力在覆冰厚度和风速共同作用下的变化曲线
图6  导线1-2阶固有频率及振型: a一阶; b二阶
图7  脉动风风速时程曲线及脉动风功率谱密度曲线
图8  导线的水平应力响应时程曲线
Operating stress
/MPa
Cycle times
/time
Limit cycle times
/105time
Operating stress/MPa Cycle times
/time
Limit cycle times
/105time
80 72 4550 90 44 7.62
82 68 3176 92 56 5.33
84 56 217 94 60 3.01
86 44 106 96 96 1.11
88 36 12 98 36 1.08
表2  运行应力和循环次数统计表
1 GB50545-2010, Design specifications of overhead transmission line, National Standards of People's Republic (Beijing, Standards Press of China, 2010)
1 (GB50545-2010, 《110 kV-750 kV架空输电线路设计规范》, 中华人民共和国国家标准(北京, 中国标准出版社, 2010))
2 ZHONG Qunpeng, ZHAO Zihua, Fracture Study (Beijing, High Education Press, 2006)p.65
2 (钟群鹏, 赵子华, 断口学(北京, 高等教育出版社, 2006)p.65)
3 ZHANG Xiangting, Wind Effect on Structures (Beijing, China Architecture and Building Press, 2006)p.27
3 (张相庭, 结构风工程( 北京, 中国建筑工业出版社, 2006)p.27)
4 SHAO Tianxiao,Wire and Mechanical Calculation of Overhead Transmission Lines ( Beijing, China Electric Power Press, 2003)p.13
4 (邵天晓, 架空送电线路的电线力学计算( 北京, 中国电力出版社, 2003)p.13)
5 The PRC standards of the power industry, The Technical Specification for High-lifted Transmission Line Design DL/T 5154-2002 ( Beijing, Standards Press of China, 2002)
5 (中华人民共和国电力行业标准, 架空送电线路杆塔结构设计技术规定DL/T 5154-2002(北京, 中国电力出版社, 2002))
6 WANG Xiaogang, LILeyi, WANG Hailan, ZHOU Cunlong, HUANG Qingxue, Numerical Modeling for Roller Leveling Process of Bimetal-plate, Chinese Journal of Materials Research, 28(4), 308(2014)
6 (王效岗, 李乐毅, 王海澜, 周存龙, 黄庆学, 双金属复合板材辊式矫直的数值模型, 材料研究学报, 28(4), 308(2014))
7 MO Fang, YAN Huifen, ZHENG Zijun, XU Demei, CHEN Wenlong, Distribution features analysis of wind resource in liangshan, Plateau and Mountain Meteorology Research, 33(2), 57(2013)
7 (莫芳, 晏惠芬, 郑自君, 胥德梅, 陈文龙, 凉山州风资源分布特征分析, 高原山地气象研究, 33(2), 57(2013))
8 GB 500545-2010, National Standards of People's Republic(Beijing, Standards Press of China, 2010)
8 (GB 500545-2010,中华人民共和国国家标准(北京, 中国标准出版社, 2010))
9 XIAO Duoyan, TAN Weibin, ZHANG Wei, A practical method of real-time measurement for power system frequency, Power System Protection and Control, 42(21), 29(2014)
10 (肖朵艳, 谭卫斌, 张维, 一种使用的电力系统频率实时测量方法, 电力系统保护与控制, 42(21), 29(2014))
11 ZHANG Xiangting, The Wind Pressure and Wind Vibration of Structure (Shanghai, Tongji University Press, 1985 )p.37
11 (张相庭, 结构风压和风振计算(上海, 同济大学出版社, 1985)p.37)
11 ZHANG Yuan, HAO Lili, DAI Jiaqi, Overview of the equivalent model research for wind farms, Power System Protection and Control, 43(6), 138(2015)
11 (张元, 郝丽丽, 戴嘉祺, 风电场等值建模研究综述, 电力系统保护与控制, 43(6), 138(2015))
12 R. P. Li, N. Zhou, W. H. Zhang, G. M. Mei, Fluctuating wind field and wind-induced vibration response of catenary based on AR model, Journal of Traffic and Transportation Engineering, 13(4), 56(2013)
13 KONG Deyi, Research on transmission line aeolian vibration and vibration control based on dynamic method,Doctoral Dissertation Huazhong University of Science and Technology(2009)
13 (孔德怡, 基于动力学方法的特高压输电线微风振动研究基于动力学方法的特高压输电线微风振动研究, 博士论文,华中科技大学(2009))
14 Y. Liu, Z. D. Qian, K. Q. Xia, Mechanical response of transmission lines based on sliding cable element, Journal of Central South University, 21(8), 3370(2014)
15 HAN Yinquan, LIANG Shuguo, CHEN Yin, ZHANG Dongbing, Model experiment and analysis of dynamic tension of long span transmission line, High Voltage Engineering, 34(5), 978(2008)
15 (韩银全, 梁枢果, 陈寅, 张冬兵, 大跨越导线动张力计算和模型实验, 高电压技术, 34(5), 978(2008))
16 YAO Weixing,Fatigue Life Prediction of Structure ( Beijing, National DefenceIndustry Press, 2003)p.28
16 (姚卫星,结构疲劳寿命分析( 北京, 国防工业出版社, 2003)p.28)
17 SHU Delin,Mechanical Property of Engineering Materials ( Beijing, China Machine Press, 2009)p.79
18 (束德林, 工程材料力学性能(北京, 机械工业出版社, 2009)p.79)
18 A. K. Khosrovanch, N. E. Dowling, Fatigue loading history reconstruction based on the rain-flow technique, International Journal of Fatigue, 12(2), 99(1990)
19 DONG Jie, CHEN Xuedong, FAN Zhichao, JIANG Huifeng, JIANG Heng, LU Shouxiang, High temperature fatigue creep behavior and life prediction of 316L stainless steel under 2-step load, Chinese Journal of Material Research, 23(5), 541(2009)
20 (董杰, 陈学东, 范志超, 江慧丰, 姜恒, 陆守香, 316L不锈钢的高温疲劳蠕变行为和寿命预测, 材料研究学报, 23(5), 541(2009))
20 W. L. Qu, J. W. Wang, Y. W. Tan, Z. Wang, Transmission tower's residual life prediction based on fatigue cumulative damage, Journal of Wuhan University of Technology, 29(1), 149(2007)
20 (瞿伟廉, 王锦文, 谭亚伟, 汪震, 基于疲劳累积损伤的输电塔结构剩余寿命估计, 武汉理工大学学报, 29(1), 149(2007))
21 L. L. Ban, W. J. Hui, Q. L. Yong, Y. Q. Wen, H. Dong, High cycle fatigue behavior of medium-carbon trip steel at different tensile strength levels, Chinese Journal of Materials Research, 22(6), 629(2008)
21 (班丽丽, 惠卫军, 雍岐龙, 翁宇庆, 董瀚, 不同强度中碳TRIP钢的高周疲劳破坏行为, 材料研究学报, 22(6), 629(2008))
22 LI Shunming, Mechanical Fatigue and Reliability Design (Shanghai, Science Press, 2006)p.78
22 (李舜酩,机械疲劳与可靠性设计( 上海, 科学出版社, 2006)p.78)
[1] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.