Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (11): 855-860    DOI: 10.11901/1005.3093.2015.479
  论文 本期目录 | 过刊浏览 |
石墨烯基导电纸的制备及性能研究*
南松楠1,2,张宏伟1,王钦雯1
1. 华南理工大学制浆造纸工程国家重点实验室 广州 510640
2. 国家知识产权局专利局专利审查协作河南中心 郑州 450002
Preparation and Properties of Graphene-based Conductive Paper
Songnan NAN1,2,Hongwei ZHANG1,Qingwen WANG1,**()
1. State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
2. Patent Examination Cooperation Center of the Patent Office, SIPO, Zhengzhou 450002, China
引用本文:

南松楠, 张宏伟, 王钦雯. 石墨烯基导电纸的制备及性能研究*[J]. 材料研究学报, 2016, 30(11): 855-860.
Songnan NAN, Hongwei ZHANG, Qingwen WANG. Preparation and Properties of Graphene-based Conductive Paper[J]. Chinese Journal of Materials Research, 2016, 30(11): 855-860.

全文: PDF(2576 KB)   HTML
摘要: 

以茶多酚/铝片作为还原剂, 通过对氧化石墨烯(GO)还原制备石墨烯(RGO), 并将石墨烯与纤维素复合制备石墨烯基导电纸; 在分析石墨烯结构特征的基础上, 研究了石墨烯与纤维素配比、石墨烯基导电纸定量、弯折次数及角度对导电纸性能的影响, 并对石墨烯基导电纸的电容性进行了测试。结果表明, 茶多酚/铝片可有效还原氧化石墨烯, 石墨烯的sp2电子共轭结构得到有效重建; 当纤维素/石墨烯为1:1、定量为72 g/m2时, 石墨烯基导电纸方阻为66.33 Ω/sq, 弹性模量高达1234.00 MPa。石墨烯基导电纸具有优异的柔性及导电稳定性, 在反复弯折及90°及-90°的条件下, 其电阻比值均在1.0左右; 石墨烯基导电纸的面积比电容为5.47 mF/cm2, 具有较好的电容性。

关键词 无机非金属材料茶多酚/铝片石墨烯纤维素石墨烯基导电纸    
Abstract

Tea polyphenols and aluminum flakes was utilized as the reductants to reduce graphene oxide and then synthesize graphene, the as-prepared graphene was then to prepare the graphene-based conductive paper recombination with cellulose. The influence of composite ratio between cellulose and graphene, the conductive paper ration, the folding times and angles to the conductive paper’s electrical property were discussed. The results show that graphene oxide can be reduced effectively by tea polyphenols and aluminum flakes, the sp2structure can be restored effectively. The optimal conditions is composite ratio between cellulose and graphene 1:1, the conductive paper ration 72 g/m2, the sheet resistanceand elasticity modulus of the as-prepared conductive paper is 66.33 Ω/sqand 1234.00 MPa. The conductive paper reserved good conductivity after 500 times folding and different folding angles, the ratio between after-folded resistanceand initial resistance is near 1.0. Besides, the specific capacitance of the conductive paper is 5.47 mF/cm2, which suggests a good capacitive performance.

Key wordsinorganic non-metallic materials    cellulose    grapheme    conductive paper    sheet resistance
收稿日期: 2015-08-27     
基金资助:* 制浆造纸工程国家重点实验室自主创新研究基金项目2014C24,ZD201401和2016C13
图1  石墨烯基导电纸制备过程
图2  石墨烯和氧化石墨烯的红外光谱图
图3  石墨烯的AFM图
图4  纤维素/石墨烯复合比例对导电纸方阻的影响
图5  纤维素/石墨烯复合比例对导电纸弹性模量的影响
图6  定量对导电纸方阻影响
图7  定量对导电纸弹性模量的影响
图8  弯折次数及角度对石墨烯基导电纸导电稳定性的影响
图9  石墨烯基导电纸通路展现
图10  石墨烯基导电纸循环伏安曲线
1 Geim A K, Graphene: status and prospects, Science, 324(5934), 1530(2009)
2 Geim A K, Novoselov K S,The rise of graphene, Nature materials. 6(3), 183(2007)
3 Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S, Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors, Advanced Materials, 26(28), 4855(2014)
4 Kang Y, Li Y, Hou F, Wen Y, Su D, Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage, Nanoscale, 4(10), 3248(2012)
5 Ruoff R.Graphene: Calling all chemists, Nature Nanotechnology, 3(1), 10(2008)
6 Chua C K, Pumera M, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, 43(1), 291(2013)
7 Park S, Ruoff R S, Chemical methods for the production of graphenes, Nature nanotechnology, 4(4), 217(2009)
8 Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A, Ruoff R S, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy, Carbon, 47(1), 145(2009)
9 Shin K Y, Hong J Y, Jang J, Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application, Advanced Materials, 23(18), 2113(2011)
10 Murugan A V, Muraliganth T, Manthiram A, Rapid, Facile microwave-solvothermal synthesis of graphene nanosheets and thei-polyaniline nanocomposites for energy strorage, Chemistry of Materials, 21(21), 5004(2009)
11 Shin H, Kim K K, Benayad A, Yoon S, Park H K, Jung I, Jin M H, Jeong H, Kim J M, Choi J, Lee Y H, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Advanced Functional Materials, 19(12), 1987(2009)
12 Chen C, Chen T, Wang H, Sun G, Yang X, A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide, Nanotechnology, 22(40), 405602(2011)
13 HU Xiufang, SHEN Shengrong, Jae-il Park, YANG Xianqiang, Review on Antioxidative Mechanism of Tea Polyphenols, Journal of Tea Science, (02), 93(1999)
13 (胡秀芳, 沈生荣, 朴宰日, 杨贤强, 茶多酚抗氧化机理研究现状, 茶叶科学, (02), 93(1999))
14 LI Hua, LIU Yuming, Studies on antioxidation of tea-polyphenol-silver and tea-polyphenol-zine complexes, Chemistry and Industry of Forest Products, (04), 94(2004)
14 (李华, 刘玉明,茶多酚银、茶多酚锌配合物抗氧化活性的研究, 林产化学与工业, (04), 94(2004))
15 Department of inorganic chemistry, Dalian University of Technology, Inorganic Chemistry, Fourth edition, (Beijing, Higher Education Press, 2001)
15 (大连理工大学无机化学教研室, 无机化学, 第四版, (北京, 高等教育出版社, 2001))
16 Fan Z, Wang K, Wei T, Yan J, Song L, Shao B, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon, 48(5), 1686(2010)
17 LI Hua, The study of the relationship between structures and antioxidant activities of TP and TP-metal, Master thesis, Sichuan University, 2004
17 (李华, 茶多酚及其金属化合物构效关系的研究, 硕士学位论文, 四川大学, 2004)
18 Hummers W S, Offeman R E, Preparation of Graphitic Oxide, Journal of the American Chemical Society, 80(6), 1339(1958)
19 GB/T1552-1995,Test method for measuring resistivity of monocrystal silicon and germanium with a collinear four-probe array, National Technical Supervision Bureau, 1995
19 (GB/T 1552-1995, 硅、锗单晶电阻率测定直排四探针法, 国家技术监督局, 1995)
20 Feng Y, Feng N, Du G, A green reduction of graphene oxide via starch-based materials, RSC Advances, 3(44), 21466(2013)
21 Dey R S, Hajra S, Sahu R K, Raj C R, Panigrahi M K, A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide, Chemical Communications, 48(12), 1787(2012)
22 Nethravathi C, Rajamathi M, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 46(14), 1994(2008)
23 Szabó T, Berkesi O, Dékány I, Drift study of deuterium-exchanged graphite oxide, Carbon, 43(15), 3186(2005)
24 Zhao Yaoxing, Sun Xiangyu, Spectral identification of organic molecular structure, Second Edition, (Beijing, Science Press, 2003)
24 (赵瑶兴, 孙祥玉, 有机分子结构光谱鉴定, 第二版, (北京, 科学出版社, 2003))
25 ZHU Hongwei, XU Zhiping, XIE Dan, Graphene: Structure, Preparation and Characterization, (Beijing, Science Press, 2011)
25 (朱宏伟, 徐志平, 谢丹,石墨烯, 结构、制备方法与性能表征, (清华大学出版社, 2011)
26 CHEN Yongsheng, HUANGYi, Graphene: a new two-dimensional carbon nanomaterials (Beijing, Science Press, 2011)
26 (陈永胜, 黄毅, 石墨烯, 新型二维碳纳米材料 (北京, 科学出版社, 2013))
27 Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y, Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors, Carbon, 62, 501(2013)
28 Hyun W J, Park O O, Chin B D, Foldable Graphene Electronic Circuits Based on Paper Substrates, Advanced Materials, 25(34), 4729(2013)
29 Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F.Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper, Carbohydrate Polymers, 97(1), 243(2013)
30 Gao Y, Shi W, Wang W, Leng Y, Zhao Y, Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates, Industrial & Engineering Chemistry Research, 53(43), 16777(2014)
31 HU Huili, LI Ning, Electrochemical measurement (Beijing, National Defence Industry Press, 2007)
31 (胡会利, 李宁, 电化学测量(北京, 国防工业出版社, 2007))
32 Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M, Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities, Journal of Power Sources, 194(2), 1202(2009)
33 Conway B E,Electrochemical supercapacitors: scientific fundamentals and technological applications,New York: Kluwer Academic/Plenum Publishers, 1999: Chap.15
34 Carlberg J C, Ingan?s O.Poly (3, 4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors, Journal of the Electrochemical Society, 144(4), L61(1997)
35 Alper J P, Vincent M, Carraro C, Maboudian R, Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor, Applied Physics Letters, 100(16), 163901(2012)
36 An K H, Kim W S, Park Y S, Moon J M, Bae D J, Lim S C ? L, Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Advanced Functional Materials, 11(5), 387(2001)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.