Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (11): 848-854    DOI: 10.11901/1005.3093.2016.049
  论文 本期目录 | 过刊浏览 |
Cu-Nb复合线材的径向织构和显微硬度的演变规律*
邓丽萍1(),刘跃鸣1,杨杰瑞1,汪炳叔2,杨晓芳3
1. 福州大学机械工程及自动化学院 福州 350108
2. 福州大学材料科学与工程学院 福州 350108
3. 重庆大学材料科学与工程学院 重庆 400045
Evolution of Radial Texture and Microhardness of Cu-Nb Composite Wires
Liping DENG1,**(),Yueming LIU1,Jierui YANG1,Bingshu WANG2,Xiaofang YANG3
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
2. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
3. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
引用本文:

邓丽萍, 刘跃鸣, 杨杰瑞, 汪炳叔, 杨晓芳. Cu-Nb复合线材的径向织构和显微硬度的演变规律*[J]. 材料研究学报, 2016, 30(11): 848-854.
Liping DENG, Yueming LIU, Jierui YANG, Bingshu WANG, Xiaofang YANG. Evolution of Radial Texture and Microhardness of Cu-Nb Composite Wires[J]. Chinese Journal of Materials Research, 2016, 30(11): 848-854.

全文: PDF(4125 KB)   HTML
摘要: 

采用扫描电子显微技术和电子背散射衍射技术研究了Cu-Nb复合线材的径向织构和显微硬度的演变规律。结果表明, 线材径向织构的分布呈现明显的梯度分布特征, Cu基体内以<111>丝织构为主, 且其含量从表层到中心层逐渐增多; Nb相内以<100>丝织构为主, 在径向上织构的含量没有显著的变化。径向显微硬度由界面密度和<111>Cu织构组分共同决定, 织构梯度特征是线材径向显微硬度变化的主要因素。

关键词 Cu-Nb复合材料织构强化界面密度显微硬度    
Abstract

The evolution of radial texture and microstructure of Cu-Nb microcomposite wires was investigated using scanning electron microscopy with electron back-scattering diffraction. Cu matrix shows a major <111> fiber texture, and the intensity of which increases from the surface to the center; Nb phase, however, shows a major <110> fiber texture without significant change in the intensity along the radial direction. The microhardness is determined by both the interface area density and <111>Cu texture. The texture hardening is the dominant influence on the change of radial microhardness.

Key wordsCu-Nb microcomposite    texture hardening    interface area density    microhardness
收稿日期: 2016-01-12     
基金资助:* 国家自然科学基金51301040和51601039, 福建省自然科学基金2016J05119, 福建省教育厅科技项目JA15072和福州大学贵重仪器设备开放测试基金2016T029资助项目
图1  SEM/EBSD测试区域示意图
图2  硬度值(HV)沿径向的变化
图3  线材横截面径向上的微观结构图(N=854)及界面密度变化情况(N=853和N=854)
图4  N=854线材不同区域内Cu基体的织构组分图
1 L. Thilly, F. Lecouturier, J. von Stebut, Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study, Acta Mater., 50(20), 5049(2002)
2 V. Vidal, L.Thilly, S. Van Petegem, U. Stuhr, F Lecouturier., P. O. Renault, H. Van Swygenhoven, Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons, Scri. Mater., 60(3), 171(2009)
3 H. R. Z.Sandim, M. J. R. Sandim, H. H. Bernardi, J. F. C. Lins, D. Raabe, Annealing effects on the microstructure and texture of a multifilamentary Cu-Nb composite wire, Scri. Mater., 51(11), 1099(2004)
4 L. Deng, X. Yang, K. Han, Y. Lu, M. Liang, Q. Liu, Microstructure and texture evolution of Cu-Nb composite wires, Mater. Character., 81, 124(2013)
5 S.C.V.Lim, A.D. Rollett, Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite, Mater. Sci. Eng. A, 520(1-2), 189(2009)
6 WU Ximao, HE Zhenghua, LI Chunhe, LIU Jinlong, ZHANG Fang, SHA Yuhui, Evolution of drawing texture for A6 aluminum conductor, Chin. J. Mater. Res., 29(7), 555(2015)
6 (吴细毛, 和正华, 李春和, 柳金龙, 张芳, 沙玉辉, 在A6电工铝导线的冷拉拔过程中织构的演变, 材料研究学报, 29(7), 555(2015))
7 CONG Fuguan, ZHAO Gang, TIAN Ni, LI Ruifeng, Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate, Chin. J. Mater. Res., 27(2), 144(2013)
7 (丛福官, 赵刚, 田妮, 李瑞锋, 7150-T7751铝合金厚板性能的不均匀性, 材料研究学报, 27(2), 144(2013))
8 YAO Xusheng, LIU Yandong, ZUO Liang, On the radial distribution of cold deformation textures of pure copper wire, J. Northeast. Univ., 29(3), 332(2008)
8 (姚旭升, 刘沿东, 左良, 冷变形织构沿纯铜线材径向分布的研究, 东北大学学报, 29(3), 332(2008))
9 K. Han, A. A. Vasquez, Y. Xin, P. N. Kalu, Microstructure and tensile properties of nanostructured Cu-25wt%Ag, Acta Mater., 51(3), 767(2003)
10 LIANG Ming,Study on fabrication and properties of CuNb(Sn)materials for high field magnet,Doctoral dissertation, Northwestern Polytechnical University(2009)
10 (梁明, 强磁场用铜铌(锡)材料的制备及性能研究,博士学位论文, 西北工业大学(2009))
11 DENG Liping, Research on texture evolution,mechanical and electrical properties of Cu-Nb composite wires,Doctoral dissertation,Chongqing University(2014)
11 (邓丽萍, Cu-Nb复合线材微观组织演变及力学和电学性能的研究,博士学位论文, 重庆大学(2014))
12 ZHANG Guoding, CHEN Yu LIU Cheng, The heterogeneity of mechanical properties in the microzone of metal matrix composites, Chin. J. Mater. Res., 11(1), 21(1997)
12 (张国定, 陈煜, 刘澄, 金属基复合材料微区力学性能的不均匀现象, 材料研究学报, 11(1), 21(1997))
13 Dierk Raabe, Pyuck-Pa Choi, Yujiao Li, Aleksander Kostka, Xavier Sauvage, Florence Lecouturier, Kazuhiro Hono, Reiner Kirchheim, Reinhard Pippan, David Embury, Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials, MRS Bull., 35(12), 982(2010)
14 N. Jia, F. Roters, P. Eisenlohr, D. Raabe, X. Zhao, Simulation of shear banding in heterophase co-deformation: Example of plane strain compressed Cu-Ag and Cu-Nb metal matrix compositesm, Acta Mater, 61(12), 4591(2013)
15 L. Deng, K. Han, B. Wang, X. Yang, Q. Liu, Thermal stability of Cu-Nb microcomposite wires, Acta Mater, 101, 181(2015)
16 YAO Xusheng, LIU Yandong, ZUO Liang, Quantitative texture analysis of cold drawn pearlitic steel wires, Iron and steel, 43(3), 65(2008)
16 (姚旭升, 刘沿东, 左良, 冷拔珠光体钢丝帘线中织构演变的定量研究, 钢铁, 43(3), 65(2008))
17 V. Vidal, L. Thilly, Effects of size and geometry on the plasticity of high-strength copper/tantalum nano?lamentary conductors obtained by severe plastic deformation, Acta Mater., 54, 1063(2006)
18 S. Kim, C. Choi, D. Lee, Deformation and annealing textures of drawn aluminum bronze wires, Mater. Sci. Forum, 408, 913(2002)
19 D. N. Lee, Effect of stacking fault energy on evolution of recrystallization textures in drawn wires and rolled sheets, Mater. Sci. Forum, 495, 1243(2005)
20 CHEN Jian, YANWen, CHEN Shaokai, WANG Xueyan, PENG Yuli, FAN Xinhui, Substructure formed in cold drawn processing for single crystal cooper wires, Rare Metal Mater. Eng., 36(11), 1896(2007)
20 (陈建, 严文, 陈绍楷, 王雪艳, 彭渝莉, 范新会, 单晶铜线材在冷拔过程中形成的亚结构, 稀有金属材料与工程, 36(11), 1896(2007))
21 S. Li, S. He, A.V. Bael, FEM-aided Taylor simulations of radial texture gradient in wire drawing, Mater. Sci. Forum, 408, 439(2002)
22 J. Chen, W. Yan, W. Li, J. Miao, X. Fan, Texture evolution and its simulation of cold drawing copper wires produced by continuous casting, Trans. Nonferrous Met. Soc. China, 21, 152(2011)
23 M. H. Yoo, C. T. Wei, Slip modes of hexagonal-close-packed metals. J. Appl. Phys., 38(11), 4317(1967)
24 Werner Skrotzki, Nils Scheerbaum, Carl-Georg Oertel, Roxane Arruffat-Massion, Satyam Suwas, La′szlo′S. To′th, Microstructure and texture gradient in copper deformed by equal channel angular pressing, Acta Mater., 55, 2013(2007)
25 C. X. Huang, K. Wang, S. D. Wu, Z. F. Zhang, G. Y. Li, S. X. Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Mater., 54, 655(2006)
26 L. Deng, K. Han, K. T. Hartwig, T. M.Siegrist, L. Dong, Z. Sun, X. Yang, Q. Liu, Hardness, electrical resistivity, and modeling of in situ Cu-Nb microcomposites, J. Alloys Compd., 602(0), 331(2014)
27 K. R. Karasek, J. Bevk, High temperature strength of in situ formed Cu-Nb multifilamentary composites, Scrip. Metall., 13(4), 259(1979)
[1] 李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
[2] 贾建波,鹿超,杨志刚,董添添,顾勇飞,徐岩. 固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响[J]. 材料研究学报, 2020, 34(3): 198-208.
[3] 张英东,李阁平,刘承泽,袁福森,韩福洲,Ali Muhanmmad,顾恒飞. TC11钛合金中 α''相和α'相的组织演变和显微硬度[J]. 材料研究学报, 2019, 33(6): 443-451.
[4] 赵健,刘宁,田成海,姬强,李惠琪,王淑峰,迟静,李建楠. Ni/W/C粉等离子原位冶金生成粗晶碳化钨复合材料的性能[J]. 材料研究学报, 2017, 31(2): 117-122.
[5] 张正延,孙新军,李昭东,王小江,雍岐龙,王国栋. 纳米级碳化物及小角界面密度对Fe-C-Mo-M(M=Nb、V或Ti)系钢耐火性的影响[J]. 材料研究学报, 2015, 29(4): 269-276.
[6] 李亭亭,胡勇,崔晓明,闫志杰. Zr-Al-Cu-Ni-Ag非晶复合材料的显微硬度和剪切带形貌*[J]. 材料研究学报, 2014, 28(10): 730-736.
[7] 张小亮, 王兆希, 屈宝平, 施惠基. P20钢电火花成形加工表层的组织结构和性能*[J]. 材料研究学报, 2013, 27(5): 449-453.
[8] 吕会敏 张钧. (Ti, Al, Zr)N多元氮梯度硬质反应膜的组织结构和性能[J]. 材料研究学报, 2011, 25(1): 89-94.
[9] 尧志刚 朱晓飞 张广平. 几种单晶半导体材料在压痕下的变形与断裂行为比较[J]. 材料研究学报, 2009, 23(2): 180-186.
[10] 张国定;陈煜;刘澄. 金属基复合材料微区力学性能的不均匀现象[J]. 材料研究学报, 1997, 11(1): 21-24.
[11] 侯根良;陆明珠;徐可为. 纳米压入法的柔度效应及其校正[J]. 材料研究学报, 1995, 9(6): 491-495.
[12] 米国发;曾松岩;蒋祖龄;李庆春. 快速凝固Al—Cr合金的组织和性能[J]. 材料研究学报, 1994, 8(6): 496-500.
[13] 卢柯;刘学东;胡壮麒. 纳米晶体材料的Hall—Petch关系[J]. 材料研究学报, 1994, 8(5): 385-391.