Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (5): 346-352    DOI: 10.11901/1005.3093.2014.413
  本期目录 | 过刊浏览 |
一种具有球形孔隙的高孔率泡沫钛合金*
刘培生(),顷淮斌
射线束技术与材料改性教育部重点实验室 北京师范大学核科学与技术学院 北京 100875
A Spherical-pore Foamed Titanium Alloy with High Porosity
Peisheng LIU(),Huaibin QING
(Key Laboratory of Beam Technology and Material Modification of Ministry of Education,
College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China)
引用本文:

刘培生,顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金*[J]. 材料研究学报, 2015, 29(5): 346-352.
Peisheng LIU, Huaibin QING. A Spherical-pore Foamed Titanium Alloy with High Porosity[J]. Chinese Journal of Materials Research, 2015, 29(5): 346-352.

全文: PDF(3118 KB)   HTML
摘要: 

通过对粉体熔化发泡法的改进, 制备了孔率高达90%的毫米级球孔泡沫钛合金。这种泡沫钛合金的压缩曲线包括弹性区、压缩平台区和“密实化”区等3个阶段。由于是脆性破坏, 其中的压缩平台呈锯齿状。这种泡沫钛合金的压缩破坏是通过垂直于载荷方向的孔隙逐层坍塌破碎而不断推进的, “密实化”是碎块的不断堆积过程。孔壁上的微孔对该泡沫钛的吸声性能有利, 未作任何处理的试样在1500-3000 Hz的声频范围内吸声系数最低为0.4左右, 在3000-6300 Hz则吸声系数超过0.6, 共振频率超过0.9。在较高声频段, 这种泡沫钛试样的主要吸声机制为黏滞耗散。

关键词 金属材料多孔金属泡沫金属泡沫钛合金性能    
Abstract

A millimeter-scale spherical-pore foamed titanium alloy with very high porosity up to 90% has been produced by an improved molten powder foaming method. The compression curve of this foamed alloy includes three phases: the elasticity, the compression plateau and the “densification”. The compression plateau presents a saw-tooth shape due to the brittle failure. During compression test this foamed alloy failed through collapse of pores layer by layer along the compressive stress direction, and the “densification” might be resulted from the accumulation of the collapse debris of pores. Tiny pores on walls of macro-pores are certainly beneficial to the sound-absorbing property for the present foamed titanium alloy, of which the sound-absorbing coefficient is at least about 0.4 in the frequency range of 1500-3000 Hz, and exceeds 0.6 in the range of 3000-6300 Hz and 0.9 by the resonance frequency. In addition, the mechanism related to the sound absorbing in the range of relatively high frequencies may mainly involve the viscous dissipation process.

Key wordsmetallic materials    porous metal    foamed metal    foamed titanium alloy    properties
收稿日期: 2014-08-11     
基金资助:*北京市凝聚态物理重点学科共建项目XK100270454和北师大测试基金C14支持项目。
作者简介: 刘培生, 教授
Sample No. Sample type Mean pore-diameter d /mm Porosity q/% Specific surface area Sv /(cm2/cm3)
1-3 Small pore ~0.8 ~86 ~400
4-6 Large pore ~2.5 ~89 ~450
表1  泡沫钛合金试样的孔隙参数
图1  孔径较大和孔径较小的泡沫钛合金圆形样品的宏观形貌及孔壁的微观结构
图2  泡沫钛合金制品的XRD谱
图3  孔率约90%的试样压缩到名义应变为1/3左右时的破坏状态: 高度方向为压缩方向
图4  胞孔泡沫钛合金的压缩曲线: 孔率约90%的试样终止于应变到1/3左右的不完全曲线
图5  孔率约89%的试样压缩到名义应变为2/3左右时的破坏状态
图6  胞孔泡沫钛合金的压缩曲线: 孔率约89%的试样终止于应变到2/3左右的较完全曲线
图7  泡沫钛合金试样压缩破坏后断口处的孔隙形貌和断裂位置的孔壁断口形貌
图8  样品的吸声系数与频率的关系
1 M. F. Ashby, A. Evans,N. A. Fleck, L. J. Gibson,J. W. Hutchinson,H. N. G. Wadley, Metal Foams: A Design Guide (Boston, Elsevier Science, 2000) p.1-6, 24-40
2 J. Banhart,Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559(2001)
3 P. S. Liu, K. M. Liang,Functional materials of porous metals made by P/M, electroplating and some other techniques, Journal of Materials Science, 36, 5059(2001)
4 P. S. Liu, G. F. Chen,Porous Materials (New York, Elsevier, 2014) p.113-188
5 D. C. Dunand,Processing of titanium foams, Advanced Engineering Materials, 6, 369(2004)
6 LI Yan,GUO Zhimeng, HAO Junjie, Study on gel-casting of medical porous titanium implants, Powder Metallurgy Industry, 18, 10(2008)
6 (李 艳, 郭志猛, 郝俊杰, 医用多孔钛植入材料凝胶注模成形工艺研究, 粉末冶金工业, 18, 10(2008))
7 LI Shitong,ZHU Ruifu, ZHEN Liang, LV Yupeng, ZHAO Guangfeng, ZHAN Yingjie, LEI Tingquan, Effect of sintering temperature on microstructure and properties of porous titanium, Transactions of Materials and Heat Treatment, 30, 93(2009)
7 (李士同, 朱瑞富, 甄 良, 吕宇鹏, 赵光锋, 詹英杰, 雷廷权, 烧结温度对多孔钛组织结构与性能的影响, 材料热处理学报, 30, 93(2009))
8 C. E. Wen, J. Y. Xiong, Y. C. Li, P. D. Hodgson,Porous shape memory alloy scaffolds for biomedical applications: a review, Physica Scripta, T139, 014070(2010)
9 HU Haibo,LIU Huiqun, WANG Jieen, YI Danqing, FU Shang, SUN Wuling, Reserch progress of biomedical porous titanium and its alloys, Materials Review, 26, 262(2012)
9 (胡海波, 刘会群, 王杰恩, 易丹青, 傅 上, 孙武令, 生物医用多孔钛及钛合金的研究进展, 材料导报, 26, 262(2012))
10 I. H. Oh, N. Nomura, N. Masahashi, S. Hanada,Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia, 49, 1197(2003)
11 ZHANG Li,CAO Shuhao, DUAN Ke, WENG Jie, Effects of processing condition on microstructure and properties of porous titanium prepared by porogen-based vacuum sintering, Hot Working Technology, 42, 84(2013)
11 (张 力, 曹书豪, 段 可, 翁 杰, 颗粒造孔制备多孔钛中结构及性能影响因素, 热加工工艺, 42, 84(2013))
12 H. C. Hsu, S. K. Hsu, S. C. Wu, P. H. Wang, W. F. Ho,Design and characterization of porous titanium foams with bioactive surface sintering in air, Journal of Alloys and Compounds, 575, 326(2013)
13 L. P. Lefebvre, E. Baril,Properties of titanium foams for biomedical applications, Advanced Engineering Materials, 15,159(2013)
14 S. Kashef, A. Asgari, T. B. Hilditch, W. Y. Yan, V. K. Goel, P. D. Hodgson,Fatigue crack growth behavior of titanium foams for medical applications, Materials Science and Engineering A, 528, 1602(2011)
15 WANG Xihan,LI Shujun, JIA Mingtu, HAO Yulin, YANG Rui, GUO Zhengxiao, Fabrication and mechanical properties of porous Ti-24Nb-4Zr-8Sn alloy for Biomedical applications, Chinese Journal of Materials Research, 24, 378(2010)
15 (王玺涵, 李述军, 贾明途, 郝玉琳, 杨 锐, 郭正晓,多孔医用Ti-24Nb-4Zr-8Sn合金的制备和力学性能, 材料研究学报, 24, 378(2010))
16 B. Ye, D. C. Dunand,Titanium foams produced by solid-state replication of NaCl powders, Materials Science and Engineering A, 528(2), 691(2010)
17 M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura,Mechanical properties and osteoconductivity of porous bioactive titanium, Biomaterials, 26, 6014(2005)
18 N. Resnina, S. Belyaev, A. Voronkov, A. Krivosheev, I. Ostapov,Peculiarities of mechanical behaviour of porous TiNi alloy, prepared by self-propagating high-temperature synthesis, Materials Science and Engineering A, 527, 6364(2010)
19 N. Tuncer, G. Arslan, E. Maire, L. Salvo,Influence of cell aspect ratio on architecture and compressive strength of titanium foams, Materials Science and Engineering A, 528, 7368(2011)
20 G. I. Nakas, A. F. Dericioglu, S. Bor,Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique, Materials Science and Engineering A, 582, 140(2013)
21 HE Siyuan,GONG Xiaolu, HE Deping, Effect of “through-hole” on porous aluminum alloy compressive mechanical properties, Chinese Journal of Materials Research, 23, 380(2009)
21 (何思渊, 龚晓路, 何德坪, 多孔铝合金连通孔对压缩性能的影响, 材料研究学报, 23, 380(2009))
22 WANG Qingchun,FAN Zijie, GUI Liangjin, WANG Zhenghong, FU Zilai, Energy absorption behaviour of aluminium foam under medium strain rate, Chinese Journal of Materials Research, 19, 601(2005)
22 (王青春, 范子杰, 桂良进, 王政红, 付自来, 中等应变率下泡沫铝的吸能特性, 材料研究学报, 19, 601(2005))
23 SHANG Jintang,HE Deping, Deformation of sandwich beams with Al foam cores in three-point bending, Chinese Journal of Materials Research, 17, 31(2003)
23 (尚金堂, 何德坪, 泡沫铝层合梁的三点弯曲变形, 材料研究学报, 17, 31(2003))
24 LIU Changsong,ZHU Zhengang, HAN Fusheng, Research on the internal friction of foamed aluminium in acoustic frequency, Chinese Journal of Materials Research, 11, 1153(1997)
24 (刘长松, 朱震刚, 韩福生, 泡沫铝的声频内耗, 材料研究学报, 11, 153(1997))
25 S. K. Hyun, H. Nakajima, L. V. Boyko, V. I. Shapovalov,Bending properties of porous copper fabricated by unidirectional solidification, Materials Letters, 58, 1082(2004)
26 P. S. Liu,Tensile fracture behavior of foamed metallic materials, Materials Science and Engineering A, 384, 352(2004)
27 M. D. Demetriou, J. C. Hanan, C. Veazey, M. Di Michiel, N. Lenoir, E. Ustundag, W. L. Johnson,Yielding of metallic glass foam by percolation of an elastic buckling instability, Advanced Materials, 19, 1957(2007)
28 LIU Peisheng,A new model for porous materials, Chinese Journal of Materials Research, 20, 64(2006)
28 (刘培生, 关于多孔材料的新模型, 材料研究学报, 20, 64(2006))
29 P. S. Liu,Mechanical relation of foamed metals under uniaxial and biaxial loads of collective tension and compression, Mater. Sci. Eng. A, 507, 190(2009)
30 P. S. Liu,Mechanical relations for porous metal foams under several typical loads of shearing, torsion and bending, Materials Science and Engineering A, 527, 7961(2010)
31 LIU Peisheng,Calculation method for the specific surface area of porous metals, Chinese Journal of Materials Research, 23, 415(2009)
31 (刘培生, 多孔金属比表面积的计算方法, 材料研究学报, 23, 415(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.