Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (5): 337-345    DOI: 10.11901/1005.3093.2014.495
  本期目录 | 过刊浏览 |
星型嵌段共聚物基连通离子相筹质子交换膜及其传导性能*
张杰,陈芳(),马晓燕(),尚蓓蓉,孙坤
西北工业大学理学院应用化学系 陕西高分子科学与技术重点实验室 西安 710129
Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity
Jie ZHANG,Fang CHEN(),Xiaoyan MA(),Beirong SHANG,Kun SUN
The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and the Key Laboratory of Polymer Science and Technology, School of Natural and Applied Science, Northwestern Polytechnical University, 710129, Xi’an, China
引用本文:

张杰,陈芳,马晓燕,尚蓓蓉,孙坤. 星型嵌段共聚物基连通离子相筹质子交换膜及其传导性能*[J]. 材料研究学报, 2015, 29(5): 337-345.
Jie ZHANG, Fang CHEN, Xiaoyan MA, Beirong SHANG, Kun SUN. Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity[J]. Chinese Journal of Materials Research, 2015, 29(5): 337-345.

全文: PDF(3934 KB)   HTML
摘要: 

以八官能度倍半硅氧烷(BCP-POSS)为引发剂, 用两步原子转移自由基聚合(ATRP)合成了以聚甲基丙烯酸甲酯-b-聚苯乙烯为臂的星型POSS-(PMMA-b-PS)8嵌段共聚物。用后磺化方法制备具有相同磺化度的磺化杂化高分子POSS-(PMMA-b-SPS)8, 并用以制备了质子交换膜(PEM)。分析了在不同水合状态下两种PEM的传导率随着湿度的变化规律, 发现在同样低水合状态下具有较长SPS链段的PEM其质子传导率较高; TGA分析结果表明, 两种PEM都具有高温保水性能和高的初始热分解温度; 用透射电子显微(TEM)和原子力显微镜(AFM)分析了不同嵌段比例PEM的微相结构, 发现具有较长SPS链段的PEM有利于质子传导的两相连通的微相形貌; 用低场核磁共振分析仪测定了自旋-自旋弛豫时间T2和不同共聚物低水合状态下链段分子运动特性, 发现具有较长SPS链段的PEM有较狭长且连通性较好的微相分离形貌, 显示出较高的质子自旋扩散系数, 在低湿度环境下具有较高的质子传导率。

关键词 有机高分子材料质子交换膜原子转移自由基聚合方法(ATRP)星型嵌段共聚物倍半硅氧烷微相结构    
Abstract

Star shaped block copolymer POSS-(PMMA-b-PS)8 was synthesized by a two step process of atom transfer radical polymerization (ATRP) with eight functionalized polyhedral oligomeric silisesquioxane POSS-(Cl)8 as core and poly(methyl methacrylate-b-polystyrene) as arm. The POSS-(PMMA-b-PS)8 was then sulfonation treated to produce hybrid polymer POSS-(PMMA-b-SPS)8, which was finally used as the polymer matrix for making proton exchange membranes (PEMs). The examination of conductivity as function of relative humidity for PEMs of high and low hydration status respectively indicated that with longer SPS block length exhibited higher proton conductivity for the PEMs of low hydration status with the same λ i.e. the number of water molecular coupled to sulfonic acid groups. TGA analysis showed that two kinds of PEM all exhibited higher water retention capacity and higher initial decomposition temperature. A well-connected ionic domains in PEM with longer SPS block could be observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The features of molecules motion of chain segments and spins relaxation time T2 for the PEMs of low hydration status were analyzed by low field nuclear magnetic resonance, and it is found that the well connected ionic domains could be observed also in the PEMs with longer SPS block, which exhibited higher proton spin-diffusion coefficient, therewith higher proton conductivity by low relative humidity.

Key wordsorganic polymer materials    PEM    ATRP    star shaped block copolymer    POSS    microstructure
收稿日期: 2014-09-13     
基金资助:* 国家自然科学基金(青年科学基金)51103117, 陕西省自然科学基金2013JQ2010和2013JM2012, 西北工业大学中央高校基本科研业务费基础研究基金3102014JCQ01089资助。
作者简介: 马晓燕, 教授
图1  POSS-(PMMAm-b-SPSn)8的合成路线
图2  POSS-(PMMAm-b-PSn)8a 和POSS-(PMMAm-b-PSn)8b的1H NMR
图3  POSS-(PMMAm-b-PSn)8的GPC
Block copolymer Mn Mw Mw/Mn m n PMMA(Mw) PS(Mw) IEC
POSS-(PMMAm-b-SPSn)8a 62000 151500 2.44 26 156 2730 16400 2.77
POSS-(PMMAm-b-SPSn)8b 98900 187900 1.90 16 200 1660 21000 3.85
表1  PEM的分子量、分子量分布和IEC
图4  膜的λ在30℃与湿度的关系
图5  膜在30℃的质子传导率与湿度的关系
图6  质子传导率(σ)与水合数(λ)的关系
图7  PEMs室温到160℃全水合状态下PEM的TGA曲线和全水合膜升温后冷却到室温的热分解性
图8  POSS-(PMMA26-b-SPS156)8和POSS-(PMMA16-b-SPS200)8 的TEM照片
图9  POSS-(PMMA26-b-SPS156)8 和POSS-(PMMA16-b-SPS200)8 的AFM形貌
图10  PEM的FID曲线和双指数拟合曲线
Sample Rigid phase (SPS) Flexible phase( PMMA)
T2r/ms D(T2r)/nm2ms-1 M0r T2f/ms M0f M0
POSS-(PMMA26-b-SPS156)8 0.9 0.29 612.8 5.2 194.4 56.1
POSS-(PMMA16-b-SPS200)8 0.7 0.33 553.4 3.7 261.5 64.4
表2  PEM的弛豫时间(T2)及刚性相(SPS)的质子自旋扩散系数
1 H. Zhang, P. K. Shen,Recent development of polymer electrolyte membranes for fuel cells, Chemical Reviews, 112(5), 2780(2012)
2 C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee,Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Progress in Polymer Science, 36(11), 1443(2011)
3 Y. A. Elabd, M. A. Hickner,Block copolymers for fuel cells, Macromolecules, 44(1), 1(2011)
4 F. Zhang, N. Li, S. Zhang,Preparation and characterization of sulfonated poly(arylene-co-naphthalimide)s for use as proton exchange membranes, Journal of Applied Polymer Science, 118(6), 3187(2010)
5 T. Gan, Q. Z. Jiang, H. J. Zhang, W. L. Wang, X. Z. Liao, Z. F. Ma,Study on the membrane electrode assembly fabrication with carbon supported cobalt triethylenetetramine as cathode catalyst for proton exchange membrane fuel cell, Journal of Power Sources, 196(4), 1899(2011)
6 T. Ous, C. Arcoumanis,Degradation aspects of water formation and transport in proton exchange membrane fuel cell: A review, Journal of Power Sources, 240, 558(2013)
7 S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, D. J. Jones,Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells, Journal of Power Sources, 233, 216(2013)
8 N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, M. Rikukawa,Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction, Polymer, 50(2), 534(2009)
9 M. L. Einsla, Y. S. Kim, M. Hawley, H. S. Lee, J. E. McGrath, B. Liu, M. D. Guiver, B. S. Pivovar,Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity, Chemistry of Materials, 20(17), 5636(2008)
10 T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, J. Ding,Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): improving PEM properties through rational design, Advanced Functional Materials, 16(14), 1814(2006)
11 M. A. Kakimoto, S. J. Grunzinger, T. Hayakawa,Hyperbranched poly(ether sulfone)s: preparation and application to ion-exchange membranes, Polymer Journal, 42(9), 697(2010)
12 N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver,Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s, Angewandte Chemie International Edition, 50(39), 9158(2011)
13 K. S. Lee, M. H. Jeong, J. P. Lee, Y. J. Kim, J. S. Lee,Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes, Chemistry of Materials, 22(19), 5500(2010)
14 B. Decker, C. Hartmann-Thompson, P. I. Carver, S. E. Keinath, P. R. Santurri,Multilayer sulfonated polyhedral oligosilsesquioxane (S-POSS)-sulfonated polyphenylsulfone (S-PPSU) composite proton exchange membranes, Chemistry of Materials, 22(3), 942(2009)
15 X. Qiang, F. Chen, X. Y. Ma, X. B. Hou,Star shaped POSS-methacrylate copolymers with phenyl–triazole as terminal groups, Synthesis, and the pyrolysis analysis, Journal of Applied Polymer Science, 131, 40652(2014)
16 H. Tanaka, T. Nishi,Spin diffusion in block copolymers as studied by pulsed NMR, Physical Review B, 33(1), 32(1986)
17 H. W. Meyer, H. Schneider, K. Saalwachter,Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients, Polymer Journal, 44(8), 748(2012)
18 L. Wang, C. Zhang, H. Cong, L. Li, S. Zheng, X. Li, J. Wang,Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies, Journal of Physical Chemistry B, 117(27), 8256(2013)
19 X. C. Pang, L. Zhao, M. T. Akinc, J. K. Kim, Z. Q. Lin,Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles, Macromolecules, 44, 3746(2011)
20 A. V. Anantaraman, C. L. Gardner,Studies on ion-exchange membranes, Part 1, Effect of humidity on the conductivity of Nafion?, Journal of Electroanalytical Chemistry, 414(2), 115(1996)
21 C. F. Lee,The properties of core–shell composite polymer latex, Effect of heating on the morphology and physical properties of PMMA/PS core–shell composite latex and the polymer blends, Polymer, 41, 1337(2000)
22 M. Okubo, N. Saito, R. Takekoh, H. Kobayashi,Morphology of polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) composite particles, Polymer, 46(4), 1151(2005)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.