Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 931-940    DOI: 10.11901/1005.3093.2015.12.931
  本期目录 | 过刊浏览 |
等腰梯形蜂窝玻璃钢夹芯板的侧压性能
郑吉良(),孙勇,彭明军
昆明理工大学材料科学与工程学院 昆明 650093
Edgewise Compressive Property for Sandwich Panel of Steel Plates with Isosceles-trapezoid Honeycomb Core of Fiber Cloth Reinforced Epoxy Resin
Jiliang ZHENG(),Yong SUN,Mingjun PENG
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

郑吉良,孙勇,彭明军. 等腰梯形蜂窝玻璃钢夹芯板的侧压性能[J]. 材料研究学报, 2015, 29(12): 931-940.
Jiliang ZHENG, Yong SUN, Mingjun PENG. Edgewise Compressive Property for Sandwich Panel of Steel Plates with Isosceles-trapezoid Honeycomb Core of Fiber Cloth Reinforced Epoxy Resin[J]. Chinese Journal of Materials Research, 2015, 29(12): 931-940.

全文: PDF(2533 KB)   HTML
摘要: 

使用材料试验机对等腰梯形蜂窝芯玻璃钢夹芯板面的内压缩性能进行了实验测试与模拟研究。结果表明, 夹芯板面内压缩的破坏方式主要有面板折断、夹芯板屈曲失稳及面板和蜂窝脱粘。面板是夹芯板面内压缩的主要承载构件, 蜂窝芯对面板起固支作用。面板的结构参数和材料参数是影响夹芯板面内压缩抗压强度与承载应力的主要因素, 蜂窝芯的结构参数和材料参数对夹芯板面内压缩抗压强度的影响较小, 而蜂窝芯的高度对夹芯板面内压缩承载应力有显著的影响。

关键词 无机非金属材料等腰梯形蜂窝芯抗压强度承载应力夹芯板面内压缩    
Abstract

The edgewise compressive property of sandwich panel of steel plates with isosceles-trapezoid honeycomb core of fiber cloth reinforced epoxy resin is measured by using a material testing machine, while a simulation mode is established to describe the edgewise compressive behavior. The edgewise compressive pressure may induce three types of damages of the sandwich panel, namely, the broken of plates, the buckling instability of the sandwich panel and the detachment of plates with the honeycomb core. Under an applied edgewise compressive pressure, the plates are the main load bearing component of the sandwich panel, while the honeycomb core acts only as a connector and supporter . The parameter related with the structure and the material of the plates has a great influence on the in-panel compressive strength and the bearing stress for the sandwich panel. In the contrast, parameter related with the structure and the material of the honeycomb core has a small influence on the compressive strength of the sandwich panel, but the height of honeycomb core has a great influence on the bearing stress of the sandwich panel.

Key wordsinorganic non-metallic materials    isosceles-trapezoid honeycomb core    compressive strength    load stress    sandwich panel    in-plane compression
收稿日期: 2015-03-05     
图1  等腰梯形蜂窝玻璃钢夹芯板结构其单元胞体结构参数
图2  等腰梯形玻璃钢蜂窝芯夹芯板侧压有限元模型、网格、路径及边界条件
图3  等腰梯形蜂窝芯玻璃钢夹芯板不同破坏方式的应力与位移云图
图4  蜂窝芯界面路径的正应力(z)、最大剪切应力理论值及面板界面路径的最大剪切应力理论值的分布
图5  等腰梯形蜂窝芯玻璃钢夹芯板的变形示意图
图6  蜂窝芯与面板中单向玻璃纤维排布方向对等腰梯形蜂窝芯玻璃钢夹芯板中面板折断抗压强度的影响
图7  面板厚度、Part2厚度t1、Part2高度h、蜂窝芯横截面形状的等腰梯形上底边长a与高hc对等腰梯形蜂窝芯玻璃钢夹芯板中面板折断抗压强度的影响
图8  蜂窝芯与面板中单向玻璃纤维排布方向对等腰梯形蜂窝芯玻璃钢夹芯板屈曲失稳承载应力的影响
图9  面板厚度、Part2厚度t1、Part2高度h、蜂窝芯横截面形状的等腰梯形上底边长a与高hc对等腰梯形蜂窝芯玻璃钢夹芯板屈曲失稳承载应力的影响
1 DU Shanyi, Advanced composite materials and aerospace engineering, Acta Materiae Compositae Sinica CS, 24(1), 1(2007)
1 (杜善义, 先进复合材料与航空航天, 复合材料学报, 24(1), 1(2007))
2 Zabihpoor M, Adibnazari S.Mechanisms of fatigue damage in foam core sandwich composites with unsymmetrical carbon/glass face sheets, Journal of Reinforced Plastics and Composites, 26(17), 1831(2007)
3 Vaidya U K, Pillay S, Impact and post impact vibration response of protection metal foam composite sandwich plates, Materials Science and Engineering A, 428(1), 59(2006)
4 Nemat-Nasser S, Kang W J, McGee J D, Experimental investigation of energy absorption characteristics of component of sandwich structures, International Journal of Impact Engineering, 34(6), 1119(2007)
5 SUN Zhi, SHI Shanshan, SUN Shiyong, Compression performance and interfacial properties of carbon fiber-foam metal sandwich beams with aramid fiber toughening, Acta Materiae Compositae Sinica , 31(6), 1497(2014)
5 (孙直, 石珊珊, 孙士勇, 芳纶纤维增韧碳纤维泡沫金属夹芯梁压缩性能及界面性能, 复合材料学报, 31(6), 1497(2014))
6 Wang C, Chen H R, Lei Z K, Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface, Composite Structure, 92(5), 1085(2010)
7 Sun Z, Jeyaraman J, Sun S Y, Carbon-fiber aluminum foam sandwich with short aramid-fiber interfacial toughening, Applied Science and Manufacturing, 2012, 43(11), 2059(2012)
8 Sun S Y, Chen H R, The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model, Science China Physics, Mechanics & Astronomy, 54(8), 1481(2011)
9 YAN Guang, HAN Xiaojin, YAN Chuliang, Bucking analysis of composite cylindrical shell under axial compression load, Acta Materiae Compositae Sinica , 31(3), 781(2014)
9 (闫光, 韩小进, 阎楚良, 复合材料圆柱壳轴压屈曲性能分析, 复合材料学报, 31(3), 781(2014))
10 YANG Yanzhi, ZHENG Quan, LI Hao, Numerical simulation and test on stability of composite grid stiffened cylinder, Acta Materiae Compositae Sinica , 2(1), 295(2015)
10 (杨颜志, 郑权, 李昊, 复合材料格栅圆柱筒稳定性数值仿真与试验, 复合材料学报, 32(1), 295(2015))
11 JIN Yu’an, GUO Shiju, LI Zhijun, In-plane compressive properties of mild steel honeycomb sandwich, Materials for Mechanical Engineering, 31(8), 19(2007)
11 (井玉安, 果世驹, 李志军, 刚蜂窝夹芯板面内压缩性能, 机械工程材料, 31(8), 19(2007))
12 Karagiozova D, Yu T X, Plastic deformation models of regular hexagonal honeycomb under in-plane biaxial compression, International Journal of Mechanical Science, 46(10), 1489(2004)
13 Wang A J, McDowell D L, In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Engineering Materials and Technolog, 126(2), 137(2004)
14 TIAN Aiping, YU Wei, LI Dongjie, Compressive and flexural mechanical properties of foam Al-HGM/epoxy foam composites, Acta Materiae Compositae Sinica , 2013, 30(4), 74(2013)
14 (田爱平, 余为, 李东杰, 泡沫铝-空心玻璃微珠/环氧泡沫复合材料压缩及弯曲力学性能, 复合材料学报, 30(4), 74(2013))
15 Ting-Chun Lin, Ting-Jung Chen, Jong-Shin Huang, In-plane elastic constants and strengths of circular cell honeycomb, Composites and Science and Technology, 72(4), 1380(2012)
16 Tantikom K, Aizawa T, Mukai T, Symmetric and asymmetric deformation transition in the regularly cell structure materials, International Journal of Solid and Structure, 45(12), 2512(2008)
17 Zhang W H, Sun S P, Scale-related topology optimization of cellular materials and structures, International Journal for Numerical Methods in Engineering, 68(3), 993(2006)
18 ZHENG Jiliang, Sun yong, PENG Mingjun, Mechanical properties of composite material based on fiber pull-out theory, Ordance Material Science And Engineering, 37(2), 16(2014)
18 (郑吉良, 孙勇, 彭明军, 基于纤维拔出理论的复合材料力学性能的研究, 兵器材料科学与工程, 37(2), 16(2014))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.