Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 921-930    DOI: 10.11901/1005.3093.2015.12.921
  本期目录 | 过刊浏览 |
化学侵蚀后砂浆力学特性的劣化及其细观结构损伤定量化方法*
韩铁林1,2(),师俊平2,陈蕴生1,2,党硕1,2,苏鹏1,2
1. 西安理工大学 岩土工程研究所 西安 710048
2. 西安理工大学土木建筑工程学院 西安 710048
Salt Solution Attack Induced Mechanical Property Degradation and Quantitative Analysis Method for Evolution of Meso-structure Damages of Mortar
Tielin HAN1,2,**(),Junping SHI2,Yunsheng CHEN1,2,Shuo DANG1,2,Peng SU1,2
1. Institute of Rock and Soil Mechanics, Xi'an University of Technology, Xi'an 710048, China
2. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
引用本文:

韩铁林,师俊平,陈蕴生,党硕,苏鹏. 化学侵蚀后砂浆力学特性的劣化及其细观结构损伤定量化方法*[J]. 材料研究学报, 2015, 29(12): 921-930.
Tielin HAN, Junping SHI, Yunsheng CHEN, Shuo DANG, Peng SU. Salt Solution Attack Induced Mechanical Property Degradation and Quantitative Analysis Method for Evolution of Meso-structure Damages of Mortar[J]. Chinese Journal of Materials Research, 2015, 29(12): 921-930.

全文: PDF(780 KB)   HTML
摘要: 

研究了在不同水化学环境下砂浆试样力学特性劣化及其微细观结构损伤的演化, 并探讨其力学特性劣化的细观机制。结果表明, 化学腐蚀后试样峰值前的塑性变形有所增大。溶液对试样的化学腐蚀作用越强其塑性变形越大, 并具有明显的时间阶段性。腐蚀后试样塑性变形的变化, 间接地反映了化学溶液对砂浆试样的腐蚀程度。提出无损量测方法计算不同腐蚀时间段内砂浆试样的孔隙率, 并基于其孔隙率的变化建立了新的损伤变量。研究发现, 砂浆试样的化学损伤程度与其物理力学参数之间的一致性比较明显。这说明, 用基于化学腐蚀产生的次生孔隙率建立的损伤变量定量描述试样微细观结构的化学损伤程度及其物理力学特性随化学损伤的演化过程, 是合理的。

关键词 无机非金属材料砂浆化学腐蚀细观化学损伤变量塑性变形    
Abstract

The meso-structure evolution of mortar may certainly induce a significant effect on its macroscopic mechanical properties. Herewith, the mechanism concerning the mechanical property degradation and the evolution of corrosion induced meso-structure damages of mortar were studied after immersion in different salt solutions. The experimental results show that after corrosion in salt solutions, the plastic deformation of mortar increased; and the stronger is the corrosion attack, the larger is the plastic deformation of the mortar; however which is an obvious time dependent process. Thus the degree of plastic deformation may be a reflection of the corrosion degree of mortar. A method based on nondestructive inspection was proposed to predict the variation of mortar porosity versus corrosion time, and then a new parameter for describing the damages was proposed . The present study revealed that after immersion in salt solutions the corrosion attack induced damage degree of mortar is closely related to its physical and mechanical parameters, which proves that the proposed method for quantitative analysis of the evolution of meso-structure damages is reasonable.

Key wordsinorganic non-metallic materials    mortar specimen    chemical erosion    meso-chemical damage variable    plastic deformation
收稿日期: 2015-03-23     
基金资助:* 国家自然科学基金51269024和11302167资助项目
图1  不同化学溶液pH值变化的柱状图
图2  浸泡240 d后0.01 mol/L Na2SO4 pH=1, 3, 7, 9溶液物理参数柱状图
图3  浸泡240 d后0.01, 0.1, 0.5 mol/L Na2SO4溶液物理参数柱状图
图4  浸泡240 d后0.01 mol/L Na2SO4和NaHCO3溶液物理参数的柱状图
图5  浸泡240 d后0.01 mol/L pH=7.0的Na2SO4和蒸馏水溶液物理参数的柱状图
Immersion time/d Chemical
composition
pH concentration/molL-1 Peak strength
/MPa
Peak strain
/%
Modulus of elasticity
/GPa
Up/mm
60
120
240
Na2SO4 1 0.01 30.144
21.397
17.442
0.325
0.394
0.508
11.5100
9.1000
7.0889
0.631060
1.588681
2.619533
60
120
240
Na2SO4 3 0.01 33.332
30.386
24.770
0.289
0.307
0.346
13.9800
14.1170
11.1900
0. 505737
0.917560
1.246416
60
120
240
Na2SO4 7 0.01 38.699
34.157
29.239
0.296
0.312
0.352
15.1200
14.5200
11.6120
0. 400540
0. 767590
1.002001
60
120
240
Na2SO4 9 0.01 39.410
37.603
34.157
0.249
0.276
0.312
17.2500
15.9500
14.4600
0.205362
0. 402445
0. 757828
60
120
240
Na2SO4 - 0.1 31.382
28.270
22.929
0.296
0.346
0.490
15.6069
11.5940
8.6754
0. 949222
1.021670
2.257009
60
120
240
Na2SO4 - 0.5 30.216
26.677
19.562
0.327
0.371
0.504
13.9800
10.9600
7.7829
1.108627
1.275958
2.526538
60
120
240
NaHCO3 - 0.01 35.867
31.382
26.971
0.278
0.296
0.311
15.0800
14.2300
11.8134
0. 401552
0. 754660
0. 826915
60
120
240
distilled water 7 39.104
37.310
33.216
0.289
0.316
0.327
15.4100
14.4300
13.3041
0. 352427
0. 574414
0. 773333
Natural state 43.368 0.226 19.2166 0. 003200
表1  砂浆试样的单轴压缩实验结果
图6  砂浆试样Up与ε1的关系曲线
图7  砂浆试样Up与σ、E的关系曲线
Immersion time/d Chemical
composition
pH Concentration
/molL-1
n0
/%
n(t)
/%
a
/%
νp0
/%
νp(t)
/%
b
/%
D
60
120
240
Na2SO4 1 0.01 8.66
7.85
8.37
10.18
9.70
10.62
17.64
23.58
26.76
3749
3854
3785
3565
3621
3516
4.91
6.05
7.11
0.0167
0.0201
0.0245
60
120
240
Na2SO4 3 0.01 8.25
8.27
8.50
9.23
9.57
10.01
11.82
15.72
17.77
3801
3798
3769
3678
3636
3585
3.24
4.27
4.88
0.0106
0.0142
0.0165
60
120
240
Na2SO4 7 0.01 8.37
8.06
8.51
9.28
9.21
9.86
10.87
14.27
15.94
3786
3826
3768
3672
3680
3602
3.01
3.82
4.41
0.0099
0.0125
0.0148
60
120
240
Na2SO4 9 0.01 8.38
8.16
8.50
9.12
9.09
9.57
8.81
11.38
12.66
3784
3813
3769
3691
3695
3636
2.46
3.09
3.53
0.0081
0.0101
0.0118
60
120
240
Na2SO4 - 0.1 8.02
8.48
8.14
9.32
10.19
9.99
16.14
20.24
22.80
3831
3772
3816
3667
3564
3587
4.28
5.51
6.00
0.0141
0.0187
0.0202
60
120
240
Na2SO4 - 0.5 7.91
8.42
7.79
9.28
10.24
9.76
16.86
21.60
25.29
3846
3779
3862
3676
3558
3614
4.42
5.85
6.42
0.0149
0.0199
0.0214
60
120
240
NaHCO3 - 0.01 8.51
9.42
8.09
9.45
10.62
9.41
10.98
12.73
16.28
3767
3654
3822
3651
3515
3656
3.08
3.80
4.34
0.0102
0.0132
0.0143
60
120
240
distilled water 7 8.67
8.31
8.23
9.47
9.22
9.17
9.26
10.90
11.44
3747
3793
3804
3648
3679
3685
2.64
3.01
3.13
0.0088
0.0099
0.0103
表2  砂浆试样孔隙率及其纵波波速
图8  腐蚀后砂浆试样的Vp(t)与n(t)关系曲线
图9  砂浆试样b与a关系曲线
图10  Up与孔隙率变化率a、纵波波速变化率b的关系曲线
图11  D与塑性变形Up、ε1的关系曲线
图12  D与峰值强度σ、E的关系曲线
图13  D与纵波波速变化率b的关系曲线
图14  D与溶出的Ca2+、Mg2+离子浓度的关系曲线
图15  溶出Fe(Fe3+、Fe2+)离子浓度与D的关系曲线
1 N. I. Fattuhi, B. P. Hughes, The performance of cement paste and concrete subjected to sulphuric acid attack, Cement and Concrete Research, 18(4), 545(1988)
2 L. H. Kong, G. James, Concrete deterioration due to acid precipitation, ACI Materials Journal, 84(2), 110(1987)
3 S. Chandra, Hydrochloric acid attack on cement mortar an analytical study, Cement and Concrete Research, (18), 193(1988)
4 K. Attiogbe, S. H. Rizkalla, Response of concrete to sulfuric acid attack, ACI Materials Journal,(85), 481(1988)
5 XIE Shaodong, ZHOU Ding, YUE Qixian, LIU Huiling, Influence of simulated acid rain on strength, crystal and pore structures of sand-lime slurry, Acta Scientiae Circum Stantiae, 17(l), 25(1997)
6 (谢绍东, 周定, 岳齐贤, 刘慧玲, 模拟酸雨对砂浆强度、物相和孔结构影响的研究, 环境科学学报, 17(l), 25(1997))
6 ZHOU Ding, XIE Shaodong, YUE Qixian, Study on the influence of simulated acid rain on sand-lime slurry, China Environmental Science, 16(1), 20(1996)
7 (周定, 谢绍东, 岳奇贤, 模拟酸雨对砂浆影响的研究, 中国环境科学, 16(1), 20(1996))
7 HUO Runke, LI Ning, ZHANG Haobo, Experimental study on physical characteristics of mortar subjected to hydrochloric acid attack, Rock and Soil Mechanics, 27(9), 1541(2006)
8 (霍润科, 李宁, 张浩博, 酸性环境下类砂浆材料物理性质的试验研究, 岩土力学, 27(9), 1541(2006))
8 HUO Runke, LI Ning, LIU Handong, Analysis of characteristic of longitudinal wave of mortar subject to hydrochloric acid attack, Rock and Soil Mechanic, 26(4), 608(2005)
9 (霍润科, 李宁, 刘汉东, 酸性环境下类砂岩材料波速特性分析, 岩土力学, 26(4), 608(2005))
9 NING Baokuan, ZHENG Nan, CHEN Sili, LIN Siyuan, Compressive strength of cement mortar under erosion of SO42+、HCO3-, Journal of Shenyang University of Technology, 30(4), 477(2008)
10 (宁宝宽, 郑楠, 陈四利, 林思源, SO42+、HCO3-侵蚀作用下水泥砂浆的抗压强度, 沈阳工业大学学报, 30(4), 477(2008))
10 ZHENG Nan, Experimental study for Cement Mortar’s Mechanical Capability under Environment Erosion, PhD Thesis (Liaoning, Shengyang University of Technology, 2008)
11 (郑楠, 环境侵蚀下水泥砂浆力学性能的试验研究, 博士学位论文(辽宁, 沈阳工业大学, 2008))
11 YANG Kai, LIU Jiang, SHI Zailing, LI Beixing, Research on the properties of mortar under strong acidic-environment, Concrete, 34(2), 113(2011)
12 (杨凯, 刘江, 施载玲, 李北星, 强酸性环境下砂浆性能变化研究, 混凝土, 34(2), 113(2011))
12 YANG Kai, ZHOU Mingkai, LI Beixing, TANG Kai, Study on the acid resistance of different cement mortar, Cement Guide for New Epoch, (2), 3(2011)
13 (杨凯, 周明凯, 李北星, 唐凯, 不同水泥砂浆的耐酸性研究, 新世纪水泥导报, (2), 3(2011))
13 CHEN Mengcheng, XIA Feng, WANG Kai, LUO Rui, Effect acid rain on surface damage of cement mortars, Concrete, (6), 112(2014)
14 (陈梦城, 夏峰, 王凯, 罗睿, 酸雨对水泥砂浆表面腐蚀损伤的影响, 混凝土, (6), 112(2014))
14 SONG Zhigang, ZHANG Xuesong, Experimental study of Mortar under Corrosion in Sulfuric Acid, Journal of Building Materials, 15(2), 163(2012)
15 (宋志刚, 张雪松, 稀硫酸侵蚀砂浆的试验研究, 建筑材料学报, 15(2), 163(2012)
15 HUO Runke, Experimental research on progressive and deteriorative characteristics of sandstone and mortar materials subjected to hydrochloric acid corrosion, PhD Thesis(Shanxi, Xi’an University of Technology, 2006)
16 (霍润科, 酸性环境下砂浆、砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究, 博士学位论文(陕西, 西安理工大学, 2006))
16 H. Grube, W. Rechenberg, Durability of concrete structures in acidic water, Cement and Concrete Research, (19), 783(1989)
17 H.T. CAO, L. Bucea, A. Ray, S. Yozghatlian, The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements, Cement and Concrete Composites, 19(2), 161(1997)
18 Hydrological and Geophysical Exploration Compilation Group of Changchun Geology Institute, Geophysical Exploration Tutorial of Hydrological Geology and Engineering Geology(Beijing, Geological Publishing House, 1981)
19 (长春地质学院水文物探编写组, 水文地质工程地质物探教程(北京, 地质出版社, 1981))
19 YANG Shengqi, XU Weiya, SU Chengdong, Study of the deformation failure and energy properties of rock specimen in uniaxial compression, ACTA Mechanics Solida Sinica, 27(2), 213(2007)
20 (杨圣奇, 徐卫亚, 苏承东, 岩样单轴压缩变形破坏与能量特征研究, 固体力学学报, 27(2), 213(2007))
20 YOU Mingqing, Rock Specimen Strength and Deformation and Failure Process (Beijing, Geological Publishing House, 2000)
21 (尤明庆, 岩石试样的强度及变形破坏过程(北京, 地质出版社, 2000))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.