Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 773-778    DOI: 10.11901/1005.3093.2014.587
  本期目录 | 过刊浏览 |
纳米颗粒包覆ZrW2O8空心结构的制备和性能
张琳达1,王浩伟1,齐军2,吴一1(),彭思平3
1. 上海交通大学特种材料研究所 上海 200240
2. 上海紫竹新兴产业技术研究院 上海 200240
3. 上海无线电设备研究所 上海 200090
Preparation and Properties of ZrW2O8 Hollow Structures Coated with Colloidal Carbon Spheres
Linda ZHANG1,Haowei WANG1,Jun QI2,Yi WU1,**(),Siping PENG3
1. Research Center of Special Materials, Shanghai Jiao Tong University, Shanghai 200240, China
2. Advanced Industrial Technology Research Institute (AITRI), Shanghai 200240, China
3. Shanghai Radio Equipment Institute, Shanghai 200090, China
引用本文:

张琳达,王浩伟,齐军,吴一,彭思平. 纳米颗粒包覆ZrW2O8空心结构的制备和性能[J]. 材料研究学报, 2015, 29(10): 773-778.
Linda ZHANG, Haowei WANG, Jun QI, Yi WU, Siping PENG. Preparation and Properties of ZrW2O8 Hollow Structures Coated with Colloidal Carbon Spheres[J]. Chinese Journal of Materials Research, 2015, 29(10): 773-778.

全文: PDF(2238 KB)   HTML
摘要: 

采用包覆法制备单一相钨酸锆(ZrW2O8)空心球。研究选择以水热合成法制备的胶体碳球作为制备空心球的模板, 通过溶胶—凝胶法制备了具有网状结构的钨酸锆前驱体凝胶, 经过后续简单的包覆过程得到胶体碳球—钨酸锆凝胶形成的壳核结构, 并对该壳核结构进行煅烧(610℃保温10 h)后除去碳球模板得到ZrW2O8空心球。实验所得ZrW2O8空心球平均粒径约3 μm, 球壳平均厚度为1.5 μm, 构成壳层结构的纳米级ZrW2O8颗粒为棒状无规则多面体, 尺寸约500 nm×50 nm×50 nm。FTIR和TG-DTA分析证明, 产物为立方相ZrW2O8空心球, 密度为2.8 g/cm3, 比理论值降低了45%; 产物空心球具有良好的负热膨胀特性, 在室温至200℃的温度区间内, 负膨胀系数略低于理论值, 平均热膨胀系数为-11.4×10-6K-1

关键词 无机非金属材料胶体碳球纳米颗粒包覆负膨胀ZrW2O8    
Abstract

Colloidal carbon microspheres were prepared from aqueous glucose solutions by hydrothermal synthesis procedure, and then submicron core/shell structured precursors of carbon spheres/ZrW2O8 were prepared by sol-gel method with colloidal carbon microspheres as templates to provide reactive surfaces for facilitating the deposition of nano-sized ZrW2O8 particles. Finally, hollow spheres of ZrW2O8 can be produced by calcinating the precursors at 610℃ for 10h to remove the colloidal carbon sphere templates. The final spheres ZrW2O8 with an average size about 3μm were proved to be composed of single phase nano-sized ZrW2O8 particles. Their density was measured to be 2.8 g/cm3, ca 45% lower than that of ZrW2O8. Along with the density, FTIR and TG-DTA results also indicate the existence of hollow structure of the spheres ZrW2O8, of which the thermal expansion coefficient was -11.4×10-6K-1 in the temperature range from room temperature to 200℃, a little higher than the theoretical value.

Key wordsinorganic non-metallic materials    colloidal carbon spheres    nano-layered structures    NTE    ZrW2O8
收稿日期: 2014-10-15     
基金资助:* 航天科技创新基金USCAST2012-08, CASC201106资助项目。
图1  胶体碳球的SEM像
图2  用溶胶-凝胶法制备的ZrW2O8空心球的SEM像
图3  胶体碳球、胶体碳球–ZrW2O8前驱体以及ZrW2O8空心球的红外光谱
图4  ZrW2O8空心球粉体的XRD谱
图5  胶体碳球–ZrW2O8前驱体壳核结构的TG-DTA曲线
图6  以胶体碳球为模板合成ZrW2O8空心球的过程
图7  ZrW2O8空心球粉体在不同温度下的衍射谱
图8  ZrW2O8粉体的晶胞参数与温度关系曲线
1 H. Tanaka,Thermodynamic stability and negative thermal expansion of hexagonal and cubicices, The Journal of Chemical Physics, 108(12), 4887(1998)
2 L. A. Noailles, H. H. Peng, J. Starkovich, B. Dunn,Thermal expansion and phase formation of ZrW2O8 aerogels, Chemistry Materials, 16(7), 1252(2004)
3 J. S. O. Evans, T. A. Mary, A. W. Sleight,Negative thermal expansion in a large molybdate and tungstate family, Journal of Solid State Chemistry, 133(1), 580(1997)
4 J. S. O. Evans, T. A. Mary, A. W. Sleight, T. Vogt, M. A. Subramanian,Negative Thermal Expansion in ZrW2O8 and HfW2O8, Chemistry Materials, 8(12), 2809(1996)
5 L. L. Y. Chang, M. G. Scroger, B. J. Philips,Condensed phase relations in the systems ZrO2-WO2-WO3?and HfO2-WO2-WO3, Journal of American Ceramics Society, 50(4), 211(1967)
6 A. P. Wilkinson, C. Lind, S. Pattanaik,A new polymorph of ZrW2O8 prepared using nonhydrolyticsol-gel chemistry, Chemistry Materials, 11(1), 101(1999)
7 E. Niwa, S. Wakamiko, T. Ichikawa,Preparation of dense ZrW2O8/ZrO2 co sintered ceramics with controlled thermal expansion coefficients, Journal of The Ceramics Society of Japan, 112(1305), 271(2004)
8 J. Jang, K. Lee,Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization, Chemical Communications, 10, 1098(2002)
9 N. A. Dhas, K. S. Suslick,Sonochemical preparation of hollow nanospheres and hollow nanocrystals, Journal of American Chemistry Society, 127(8), 2368(2005)
10 Q. Peng, Y. J. Dong, Y. D. Li,ZnSe semiconductor hollow microspheres, Angewandte Chemistry International Edition,?42(26), 3027(2003)
11 H. J.Hah, J. S.Kim, B. J. Jeon,Simple preparation of monodisperse hollow silica particles without using templates, Chemical Communications, 14, 1712(2003)
12 F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso,Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chemistry Materials, 13(1), 109(2001)
13 F. Caruso, X. Shi, R. A. Caruso, A. Susha,Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles, Advanced Materials, 13(10), 740(2001)
14 J. Peng, J. F. Bertone, V. L. Colvin,A lost-wax approach to monodisperse colloids and their crystals, Science, 291, 453(2001)
15 H. Shiho, N. J. Kawahashi,Iron compounds as coatings on polystyrene latex and as hollow spheres, Journal of Colloid and Surface Science, 226(1), 91(2000)
16 X. M. Sun, Y. D.Li,Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angewandte Chemistry International Edition, 43(5), 597(2004)
17 X. M. Sun, Y. D.Li,Ga2O3 and GaN semiconductor hollow spheres, Angewandte Chemistry International Edition, 43(29), 3827(2004)
18 X. L. Li, T. J. Lou, X. M. Sun, Y. D. Li,Highly sensitive WO3 hollow-sphere gas sensors, Inorganic Chemistry, 43(17), 5442(2004)
19 R. Z. Yang, H. L. Hong, X. P. Qiu, L. Q. Chen,A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates, Chemistry-A European Journal, 12(15), 4083(2006)
20 Y. C. Liu, X. P. Qiu, Y. Q. Huang, W. T. Zhu,Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts, Carbon, 40(13), 2375(2002)
21 F. X. Xie, Z. Q. Tian, H. Meng, P. K. Shen, K. Pei,Increasing the three-phase boundary bya novel three-dimensional electrode, Journal of Power Sources, 141(2), 211(2005)
22 R. Z. Yang, X. P. Qiu, H. R. Zhang, J. Q. Li, W. T. Zhu, Z. X. Wang, X. J. Huang, L. Q. Chen,Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol, Carbon, 43(1), 11(2005)
23 Q,Wang, H. Li, L. Q. Chen, X. J. Huang, Novel spherical microporous carbon as anode material for Li-ion batteries, Solid State Ionics, 152, 43(2002)
24 V. K. La Mer,Nucleationin phase transitions, Industrial and Engineering Chemistry, 44(6), 1270(1952)
25 T. R. Ravindran, Akhilesh. K. Arora, T. A. Mary,High-pressure Raman spectroscopic study of zirconium tungstate, Journal of Physics: Condensed Matter, 13(50), 11573(2001)
26 C. Dong,PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst., 32, 838(1999)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.