Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 751-756    DOI: 10.11901/1005.3093.2015.023
  本期目录 | 过刊浏览 |
直流磁控溅射非晶碳膜的导电性和耐蚀性
张海峰1,2,张栋2,李晓伟2,鲁聪达1,柯培玲2,汪爱英2()
1. 浙江工业大学机械工程学院 杭州 310004
2. 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 中国科学院宁波材料技术与工程研究所 宁波 315201
Electric Conductivity and Corrosion Resistance of Amorphous Carbon Films Prepared by Direct Current Magnetron Sputtering on 304 Stainless Steel
Haifeng ZHANG1,2,Dong ZHANG2,Xiaowei LI2,Congda LU1,Peiling KE2,Aiying WANG2,**()
1. College of mechanical engineering, Zhejiang University of Technology, Hangzhou 310004, China
2. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

张海峰,张栋,李晓伟,鲁聪达,柯培玲,汪爱英. 直流磁控溅射非晶碳膜的导电性和耐蚀性[J]. 材料研究学报, 2015, 29(10): 751-756.
Haifeng ZHANG, Dong ZHANG, Xiaowei LI, Congda LU, Peiling KE, Aiying WANG. Electric Conductivity and Corrosion Resistance of Amorphous Carbon Films Prepared by Direct Current Magnetron Sputtering on 304 Stainless Steel[J]. Chinese Journal of Materials Research, 2015, 29(10): 751-756.

全文: PDF(2634 KB)   HTML
摘要: 

用直流磁控溅射技术在304不锈钢基体上制备导电非晶碳膜, 重点研究了基体偏压对非晶碳膜微结构、导电性和耐蚀性的影响。结果表明: 与纯不锈钢双极板相比, 经非晶碳膜表面改性的不锈钢表面的导电性和耐蚀性均大幅度提高。当基体偏压为-200 V时在质子交换膜燃料电池组装典型压力(1.5 MPa)下非晶碳膜的sp2含量最高, 使改性不锈钢双极板具有最低的接触电阻(16.65 mΩcm2); 在模拟质子交换膜燃料电池工作环境的腐蚀溶液中镀膜后不锈钢板的腐蚀电位显著提高, 腐蚀电流明显下降。尤其在偏压-200 V下薄膜具有最佳的致密性, 腐蚀电位为0.25 V, 腐蚀电流密度为1.22×10-8 A/cm2, 耐蚀性能最佳。

关键词 无机非金属材料质子交换膜燃料电池非晶碳膜磁控溅射接触电阻耐蚀性    
Abstract

The conductive amorphous carbon films were deposited on the 304SS by conventional direct current magnetron sputtering. The effect of substrate bias on the microstructure and property of amorphous carbon films were mainly investigated. The results show that the electrical conductivity and corrosion resistance are improved significantly for the carbon films coated stainless steel in comparison to the untreated ones. Specifically, when the substrate bias was -200 V the contact resistance was about 16.65 mΩcm2, which may be ascribed to the highest fraction of sp2 bonds under the normal compacting force of the fuel cells at 1.5 MPa. The corrosion potential of the carbon films coated stainless steel significantly increased in the simulated PEM fuel cells environment, while the corrosion current density obviously decreased, especially when the bias was -200 V the carbon film performs the best corrosion resistance, which may be attributed to its best compactness, for this case the corrosion current density is 1.22×10-8 A/cm2 and the corrosion potential is 0.25 V.

Key wordsinorganic non-metallic materials    PEM fuel cells    amorphous carbon films    magnetron sputtering    contact resistance    corrosion resistance
收稿日期: 2015-01-14     
基金资助:* 国家自然科学基金51175472, 国家自然科学优秀青年基金51522106, 宁波市自然科学基金2015A610083和宁波市工业重点2014B10032资助项目。
图1  接触电阻的测试装置示意图
图2  不同偏压碳膜的表面和截面SEM图
图3  不同偏压非晶碳膜AFM形貌图
图4  不同偏压碳膜的拉曼光谱和拟合G峰位、ID/IG及G峰的半高宽
图5  不同偏压非晶碳膜和石墨的电阻率
图6  不同压紧力基体和非晶碳膜与碳纸之间的接触电阻
图7  304不锈钢基体与不同偏压非晶碳膜在模拟腐蚀溶液中动电位极化曲线
图8  碳膜改性不锈钢双极板的腐蚀机理示意图
图9  基体和非晶碳膜与去离子水间的接触角
1 ZHANG Haifeng,YI Baolian, HOU Ming, QIAO Fengtong, ZHANG Huaming, Materials for bipolar plates in proton-exchange membrane fuel cells and their preparation, Chinese journal of power sources, 27(2), 129(2003)
1 (张海峰, 衣宝廉, 侯 明, 乔凤桐, 张华民, 质子交换膜燃料电池双极板的材料与制备, 电源技术, 27(2), 129(2003))
2 Dongming Zhang,Liangtao Duan, Lu Guo, Wei-Hsing Tuan, Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell, Int.J.Hydrogen Energy, 35(8), 3721(2010)
3 C. Liua, A. Leylanda, S. Lyonb, A. Matthewsa,Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates, Surface and Coatings Technology, 76-77, 615(1995)
4 S. Rudenjaa, C. Leygrafa, J. Pana, P. Kulub, E.Talimetsc, V.Miklid,Duplex TiN coatings deposited by arc plating for increased corrosion resistance of stainless steel substrates, Surface and Coatings Technology, 114(2-3), 129(1999)
5 Show Y. Electrically conductive amorphous carbon coating on metal bipolar plates for PEFC, Surf Coat Technology, 202(4-7), 1252(2007)
6 Show Y,Miki M, Nakamura T. Increased in output power from fuel cell used metal bipolar plate coated with a-C film, Diamond Relat Mater, 16(4-7), 1159(2007)
7 K. Feng, Y. Shen, H.L. Sun, D.G. Liu, Q. An, X. Cai, Paul K. Chu,Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells, Int.J.Hydrogen Energy, 34(16), 6771(2009)
8 P. Y. Yi, L. F. Peng, L. Z. Feng, G. P, X. M. L,Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated stainless steel bipolar plates, J. Power Sources, 195(20), 7061(2010)
9 Heli Wang,Mary Ann Sweikart, John A Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, J.Power Sources, 115(2), 243(2003)
10 K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, X. Shi,Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy, J Appl Phys, (87), 7283(2000)
11 A. C. Ferrari, J. Roberson,Resonant Raman spectroscopy of Disordered amorphous and diamond like carbon, Phys Rev B, 64, 075414(2001)
12 C. Casiraghi, A.C. Ferrari, J. Robertson,Raman spectroscopy of hy drogenated amorphous carbons, Phys Rev B, 72, 08540(2005)
13 A. C. Ferrari, J. Robertson,Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev B, 61(20), 14095(2000)
14 C Turan,?N Cora, M Ko?, Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells, J Power Sources, 243(1), 925(2013)
15 Peiyun Yi,Linfa Peng, Tao Zhou, Hao Wu, Xinmin Lai, Development and characterization of multilayered Cr-C/a-C: Cr film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 230(15), 25(2013)
16 E. A Cho, U. -S Jeon, H. Y Ha, S. -A Hong, I. -H Oh,Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources, 125(2), 178(2004)
17 JIANG Lei,Nanostructured materials with superhydrophobic surface from nature to biomimesis, Chemical Industry and Engineering Progress, 22(12), 1258(2003)
17 (江 雷, 从自然到仿生的超疏水纳米界面材料, 化工进展, 22(12), 1258(2003))
18 Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, H. Yan,Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity, Applied Surface Science, 253, 2690(2006)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.