Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (6): 433-442    DOI: 10.11901/1005.3093.2014.106
  本期目录 | 过刊浏览 |
基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理*
梁金明,唐荻,武会宾(),岳远杰
北京科技大学高效轧制国家工程研究中心 北京 100083
Cyclic Corrosion Behavior of E36 Low-alloy Steel in a Simulated Cargo Oil Tank Upper Deck Environment Corresponding to IMO Standard
Jinming LIANG,Di TANG,Huibin WU(),Yuanjie YUE
National Engineering Research Center of Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083
引用本文:

梁金明,唐荻,武会宾,岳远杰. 基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理*[J]. 材料研究学报, 2014, 28(6): 433-442.
Jinming LIANG, Di TANG, Huibin WU, Yuanjie YUE. Cyclic Corrosion Behavior of E36 Low-alloy Steel in a Simulated Cargo Oil Tank Upper Deck Environment Corresponding to IMO Standard[J]. Chinese Journal of Materials Research, 2014, 28(6): 433-442.

全文: PDF(9412 KB)   HTML
摘要: 

为探究低合金钢在O2-CO2-SO2-H2S湿气环境中的腐蚀规律和机理, 应用基于IMO标准自制的货油舱上甲板环境腐蚀模拟装置, 对1种E36级低合金钢的全周期腐蚀行为进行研究。标准腐蚀试验后, 测量了不同周期的腐蚀减薄量和腐蚀速率速率, 拟合了25年外推腐蚀减薄量计算公式和曲线, 观察去除腐蚀产物膜前后的宏观形貌, 应用SEM对表层及截面腐蚀产物膜的微观形貌及结构进行分析, 通过XRD和EDS分析腐蚀产物膜的物相组成和元素分布。结果表明: IMO标准全周期腐蚀实验后, 实验用低合金钢的25年外推腐蚀减薄量为2.21 mm。在腐蚀前期, 由温湿交替和酸性气体导致酸性液滴在腐蚀产物膜表层形成, 进而形成腐蚀鼓泡; 腐蚀后期, 腐蚀鼓泡长大并伴随脱落, 最终表层腐蚀产物膜全部脱落, 内层腐蚀产物膜裸露于腐蚀环境中。腐蚀产物膜外层主要由α-FeOOH、γ-FeOOH、元素S、FeS2、Fe1-xS和FeS组成, 结构相对疏松, 内层腐蚀产物膜主要由致密的α-FeOOH组成。

关键词 金属材料货油舱IMO标准低合金钢上甲板全周期腐蚀行为腐蚀机理腐蚀产物膜    
Abstract

The full-system cycle corrosion behavior of E36 grade low-alloy steel was studied by a homemade device to simulate the cargo oil tank upper deck corrosion environment which was established corresponding to the international maritime organization standard. The corrosion rate and reduction of thickness of the steel were measured respectively, and an extrapolation of the thickness reduction for 25 years corrosion was calculated by fitting formula and curve. Surface morphology of steel tested for different cycles before and after the removal of corrosion product films was observed by scanning electron microscope (SEM). The distribution of element and phase constituent of corrosion product film were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) respectively. The results showed that the extrapolation of thickness reduction for 25 years corrosion was 2.21 mm. In the early stage of the corrosion, acid condensing droplets were formed on the surface of corrosion product film due to the existence of sour gas and the alternating temperature and humidity, and then the corrosion scale was gradually blistered. In the later stage of the corrosion, the size of the blisters grew up, and then most of which cracked and falled off. At last, the outer corrosion scale was completely detached, and the inner corrosion product scale was exposed to the corrosive environment. The rather loose outer corrosion scale of the steel formed in wet O2-CO2-SO2-H2S gas environment was mainly consisted of α-FeOOH, γ-FeOOH, S, FeS2, Fe1-xS and FeS. However the rather compact inner corrosion product scale was consisted mainly of α-FeOOH.

Key wordsmetallic materials    cargo oil tank    IMO standard    low-alloy steel    upper deck    full-system cycle    corrosion behavior    corrosion mechanism    corrosion product film
收稿日期: 2014-02-27     
基金资助:* 国家科技重大专项2011ZX05016-004和国家科技支撑计划2011BAE25B00资助项目。
Yield strength/MPa Tensile strength/MPa Elongation/% Impact energy (-40℃)/J
E36/NV ≥355.0 490.0-620.0 ≥21.0 ≥34.0
Test steel 385.3 510.5 36..2 321.0
表1  E36级钢和实验钢的力学性能
图1  实验钢微观组织金相和SEM像
图2  油轮舱上甲板模拟腐蚀实验装置示意图
Cycle/d Width/mm Length/ mm Area/ cm2 Weight before corrosion/g Weight after corrosion/g Weight loss/g Thicknessreduction/mm Average thickness reduction/mm Corrosion rate/(mm/a) Average corrosion rate/(mm/a)
21-1 24.82 60.06 14.91 59.0540 58.7450 0.3090 0.0264 0.0263 0.4590 0.4571
21-2 24.86 59.90 14.89 58.8988 58.5846 0.3142 0.0269 0.4672
21-3 24.84 60.04 14.91 59.3268 59.0269 0.2999 0.0256 0.4452
49-1 25.00 59.56 14.89 61.3258 60.4464 0.8794 0.0779 0.0752 0.5604 0.5589
49-2 24.92 59.88 14.92 61.6333 60.7525 0.8808 0.0745 0.5601
49-3 24.94 60.00 14.96 61.6516 60.7746 0.8770 0.0731 0.5561
77-1 24.72 60.04 14.84 58.6934 57.8381 0.8553 0.0734 0.0767 0.3480 0.3640
77-2 24.76 59.52 14.74 57.6784 56.7283 0.9501 0.0821 0.3893
77-3 24.90 59.94 14.93 56.5004 55.6238 0.8766 0.0748 0.3547
98-1 24.84 60.02 14.91 59.1935 57.9160 1.2775 0.1092 0.1011 0.4065 0.3764
98-2 24.90 60.10 14.96 58.5831 57.4254 1.1577 0.0986 0.3670
98-3 24.92 59.90 14.93 59.2034 58.0846 1.1188 0.0955 0.3556
表2  货油舱上甲板环境腐蚀实验数据
图3  实验钢的不同腐蚀周期年平均腐蚀速率
Cycle/d Ecorr/mV icorr/μA/cm2 Rrust/Ωcm2 Rct/ Ωcm2
21d -624 110 33 39
49d -599 42 107 204
77d -464 38 359 554
98d -494 51 204 416
表3  实验钢电化学参数拟合结果
图4  腐蚀厚度减薄量拟合曲线及公式
图5  不同腐蚀周期实验钢去除腐蚀产物膜前后腐蚀形貌
图6  不同周期腐蚀后实验钢在模拟腐蚀环境中的极化曲线
图7  实验钢在模拟腐蚀环境中的EIS等效电路图
图8  不同周期腐蚀后实验钢在模拟腐蚀环境中的Nyquist图
图9  不同腐蚀周期实验钢表层腐蚀产物膜微观形貌
图10  不同腐蚀周期下实验钢腐蚀产物膜的截面微观形貌
图11  不同腐蚀周期下实验钢腐蚀产物膜的XRD谱
图12  49 d腐蚀之后腐蚀表层产物膜形貌和EDS分析
图13  低合金钢货油舱上甲板环境腐蚀机理示意图
1 Y. Inohara, T. Komori, K. Kyono, K. Ueda, S. Suzuki, H. Shiomi,Development of corrosion resistant steel for bottom plate of COT, in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.33-36
2 Inohara Y,Komori T, Kyono K, Shiomi H, Prevention of COT bottom pitting corrosion by zinc-prime, in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.29-31
3 C. G. Soares, Y. Garbatov, A. Zayed, G. Wang,Corrosion wastage model for ship crude oil tanks, Corrosion Science, 50(11), 3095(2008)
4 C. G. Soares, Y. Garbatov, A. Zayed, G. Wang,Influence of environmental factors on corrosion of ship structures in marine atmosphere, Corrosion Science, 51(9), 2014(2009)
5 J. K. Paik, A. K. Thayamballi, Y. I. Park, J. S. Hwang,A time-dependent corrosion wastage model for seawater ballast tank structures of ships, Corrosion Science, 46(2), 471(2004)
6 M. W. Hindmarsh,The development of water based shop primers, in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.45-50
7 S. Yasuyuki, K. Katsumi, H. Osamu,The third generation shop peimer and Japanese shipbuilding construction process. in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.37-44
8 S. Sakashita, A. Tatsumi, H. Imamura, H. Ikeda,Development of anti-corrosion steel for the bottom plates of cargo oil tanks, in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.1-5
9 K. Katoh, S. Imai, D. T. Yasunaga, H. Miyuki, Y. Yamane, H. Ohyabu, Y. Kobayashi, M. Yoshikawa, Y. Tomita,Study on localized corrosion on cargo oil tank bottom plate of oil tanker, Transactions of the Society of Naval Architects and Marine Engineers, 3, (2003)
10 D. T. Yasunaga, K. Katoh, S. Imai, H. Miyuki, Y. Yamane, H. Ohyabu, M. Saito, M. Yoshikawa, Y. Kobayashi, Y. Tomita,Study on cargo oil tank upper deck corrosion of oil tanker, Transactions of the Society of Naval Architects and Marine Engineers, 3, (2003)
11 K. Kashima, Y. Tanino, S. Kubo, A. Inami, H. Miyuki,Development of Corrosion Resistant Steel for Cargo Oil Tanks, in: Shipbuilding Technology ISST 2007, edited by The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects (Osaka, 2007) p.5-10
12 LIU Wei,FAN Xuehua, LI Shaofei, SHANG Chengjia, WANG Xuemin, LU Minxu, Corrosion behavior of low alloy steels in a CO2-O2-H2S-SO2 wet gas environment of crude oil tanks, J. Univ. Sci. Technol. Beijing, 33(1), 33(2011)
12 (柳 伟, 樊学华, 李少飞, 尚成嘉, 王学敏, 路民旭, 油轮舱CO2-O2-H2S-SO2湿气环境中低合金钢的腐蚀行为, 北京科技大学学报, 33(1), 33(2011))
13 LIANG Jinming,TANG Di, WU Huibin, WANG Lidong, Environment corrosion behavior of cargo oil tank deck made of Cr-contained low-alloy steel, Journal of Southeast University(Natural Science Edition), 43(1), 152(2013)
13 (梁金明, 唐 荻, 武会宾, 王立东, 含Cr低合金钢货油舱上甲板环境腐蚀行为, 东南大学学报(自然科学版), 43(1), 152(2013)
14 J. M. Liang, D. Tang, P. C. Zhang, H. B. Wu, H. Y. Mao, X. T. Liu,Corrosion behavior of low-alloy steel in COT upper deck O2-CO2-SO2-H2S moisture environment, Advanced Materials Research, 652, 916(2013)
15 XIONG Huixin,ZHOU Lixiang, Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(VI) from aqueous solutions, Acta Petrologica Et Mineralogica, 27(6), 559(2008)
15 (熊慧欣, 周立祥, 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(VI)上的作用, 岩石矿物学杂志, 27(6), 559(2008))
16 R. M. Cornell, U. Schwetmann,Iron Oxides in the Laboratory (New York, VCH Publishers, 1991)
17 G. Schmitt,Effect of elemental sulfur on corrosion in sour gas systems, Corrosion, 47(4), 285(1991)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.