Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (3): 247-251    
  研究论文 本期目录 | 过刊浏览 |
N掺杂TiO2的制备和光催化性能*
郝栋 姜春海 杨振明 张劲松
(中国科学院金属研究所 沈阳 110016)
The Preparation of N-doped TiO2 and Its #br# Photocatalytic Property
HAO Dong JIANG Chunhai YANG Zhenming ZHANG Jinsong**
(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016)
引用本文:

郝栋,姜春海,杨振明,张劲松. N掺杂TiO2的制备和光催化性能*[J]. 材料研究学报, 2013, 27(3): 247-251.
HAO Dong, JIANG Chunhai, YANG Zhenming, ZHANG Jinsong**. The Preparation of N-doped TiO2 and Its #br# Photocatalytic Property[J]. Chinese Journal of Materials Research, 2013, 27(3): 247-251.

全文: PDF(2180 KB)  
摘要: 

以钛酸四丁酯、酚醛树脂、无水乙醇、冰醋酸、盐酸胍和P123为原料制备氮掺杂TiO2, 采用XRD、 SEM、TEM、XPS、N2吸附-脱附和UV-Vis等手段对其进行了表征。以对氨基苯磺酸为模型污染物, 研究了氮源加入量对氮掺杂氧化钛光催化性能的影响。结果表明, 所制备的样品为锐钛矿型TiO2, 一次粒径约为13.7 nm, 二次粒径约为100 nm, 颗粒间有堆积的介孔;氮的掺杂使TiO2在可见光区具有显著的吸收。随着N源加入量的提高, 在可见光区的吸收增强, 光催化效果也随之增强。

关键词 无机非金属材料N掺杂TiO2对氨基苯磺酸可见光光催化    
Abstract

N-doped TiO2 was prepared by the quick polymerization of Tetrabutyltitanate and phenolic resin with solvent thermal reactions using tetrabutyltitanate, phenolic resin, absolute ethanol, acetic acid, guanidine hydrochloride (GHC) and P123. The N- doped TiO2 was characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption and UV-Vis. We also investigated the effect of GHC adding amount to the photocatalytic activity by taking 4- aminobenzenesulfonic acid as a model test. The results showed that the N-doped TiO2 was composed of anatase phase with a particle size about 13.7 nm and the aggregate about 100 nm. There were lots of mesoporous between the particles. The doping of N element resulted in a red shift of the absorption edge. The absorption of visible light and photocatalytic activity of N-doped TiO2 are promoted with the increase of the adding amount of nitrogen source.The result was consistent with the atom fraction in N-TiO2 measured by XPS.

Key wordsinorganic non- metallic materials    N- doped TiO2    4- aminobenzenesulfonic acid    visible light photocatalysis
收稿日期: 2013-04-19     
ZTFLH:  TB383  
基金资助:

国家科技支撑计划2011BAE03B07资助项目

1 Akira Fujishima, Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238(5358), 37(1972)
2 S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous-solutions at semiconductor powders. Journal of Physical Chemistry, 81(15), 1484(1977)
3 S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, Journal of the American Chemical Society, 99(1), 303(1977)
4 Michael Hoffmann R., Scot T. Martin, Wonyong Choi, Detlef W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95(1), 69(1995)
5 Tsuyoshi Ochiai, Akira Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(4), 247(2012)
6 Kazuya Nakata, Akira Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169(2012)
7 Xiaobo Chen, Samuel S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chemical Reviews, 107(7), 2891(2007)
8 W. Y. Choi, A. Termin, M. R. Hoffmann, The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics, Journal of Physical Chemistry, 98(51), 13669(1994)
9 M. Anpo, M. Takeuchi, K. Ikeue, S. Dohshi, Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation, The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Current Opinion in Solid State & Materials Science, 6(5), 381(2002)
10 C. Liu, N. Z. Bao, Z. H. Yang, X. H. Lu, Photocatalytic performance of TiO2 modified by doped transition metal ions. Chinese Journal of Catalysis, 22(2), 215(2001)
11 TANG Yuchao, HUANG Xianhuai, YU Hanqing, HU Chun, Nonmetal element doping mechanisms of titanium xxide photocatalyst, Progress in Chemistry, 19(2/3), 225(2007)
(唐玉朝, 黄显怀, 俞汉青, 胡 春, 非金属掺杂改性TiO2光催化剂的机理.化学进展, (Z1), 225(2007))
12 J. L. Zhang, Y. M. Wu, M. Y. Xing, S. A. K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 3(6), 715(2010)
13 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(5528), 269(2001)
14 S. Yin, H. Yamaki, M. Komatsu, Q. W. Zhang, J. S. Wang, Q. Tang, T. Sato, Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry, 13(12), 2996(2003)
15 H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, Journal of Physical Chemistry B, 107(23), 5483(2003)
16 H. L. Qin, G. B. Gu, S. Liu, Preparation of nitrogen-doped titania and its photocatalytic activity, Rare Metals, 26(3), 254(2007)
17 LI Yanhong, CAO Wenbin, WEI Yi, RAN Fanyong, ZHANG Xiaoning, Preparation of nitrogen-doped nano-TiO2 powders, Journal of Inorganic Materials, 21(5), 1067(2006)
(李艳红, 曹文斌, 韦 祎, 冉凡勇, 张小宁, 氮掺杂纳米TiO2粉体的制备研究, 无机材料学报, 21(5), 1067(2006))
18 B. F. Dzhurinskii, D. Gati, N. P. Sergushin, V. I. Nefedov, YA. V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russian Journal of Inorganic Chemistry, 20, 2307(1975)
19 G. Hopfeng?rtner, D. Borgmann, I. Rademacher, G. Wedler, E. Hums, G. W. Spitznagel, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, Journal of Electron Spectroscopy and Related Phenomena, 63(2), 91(1993)
20 X. Chen, Y. B. Lou, A. C. S. Samia, C. Burda, J. L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder, Advanced Functional Materials, 15(1), 41(2005)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.