Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (3): 237-246    
  研究论文 本期目录 | 过刊浏览 |
960 MPa高强度钢材对接焊缝的低温断裂韧性*
王元清 刘希月 石永久
(清华大学土木工程系 土木工程安全与耐久教育部重点实验室 北京 100084)
The Fracture Toughness of Butt Weld at Low Temperature of 960 MPa High-strength Steel
WANG Yuanqing LIU Xiyue** SHI Yongjiu
(Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084)
引用本文:

王元清,刘希月,石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性*[J]. 材料研究学报, 2013, 27(3): 237-246.
WANG Yuanqing, LIU Xiyue, SHI Yongjiu. The Fracture Toughness of Butt Weld at Low Temperature of 960 MPa High-strength Steel[J]. Chinese Journal of Materials Research, 2013, 27(3): 237-246.

全文: PDF(9820 KB)  
摘要: 

对14 mm厚的960 MPa结构钢材的对接焊缝进行了低温断裂韧性试验, 采用三点弯曲试件, 以裂纹尖端张开位移CTOD为指标, 对960 MPa高强度钢材焊缝的断裂行为进行分析。计算出母材、焊缝区和热影响区的断裂韧性CTOD临界值δm与温度的关系, 采用Boltzmann 函数对其结果进行拟合分析, 得到韧脆转变温度, 并对其断裂微观机理进行分析。结果表明: 断裂韧性CTOD临界值δm随温度降低呈下降趋势, 与Q235、Q345、Q390及Q460相比, 960 MPa高强度钢材的δm值最低, 其焊接热影响区的δm值比焊缝金属和母材均小, 其韧脆转变温度也较高(-12.45 ℃), 低温冷脆特征更加显著。

关键词 金属材料高强度钢材对接焊缝低温断裂韧性裂纹尖端张开位移    
Abstract

A series of three point bending tests of 960 MPa high- strength steel at low temperature were carried out in the present study, five temperature points were selected for the tests, and the crack tip opening displacement was taken as the fracture toughness index. The fracture behavior of butt weld of 960 MPa steel were analyzed based on the experimental phenomenon, the relationship between fracture toughness and temperature was investigated and the test data were fitted by the Boltzmann function, and the fracture micro mechanism was analyzed by electron microscope scanning. The results show that the variation trend of fracture toughness (critical CTOD valuesδm) is decline as temperature decreases, theδm values of 960 MPa steel are lower than that of Q235, Q345, Q390 and Q460 steels, and theδm values of the HAZ are lower than that for base material and weld metal, and the ductile-brittle transition temperature for HAZ(-12.45℃) is higher than that for base material and weld metal as well.

Key wordsmetallic materials    high- strength steel    butt weld    low temperature    fracture toughness    crack tip opening displacement
收稿日期: 2013-04-19     
ZTFLH:  TU511  
基金资助:

* 国家自然科学基金51178244资助项目。

1 SHI Gang, SHI Yongjiu, WANG Yuanqing, Engineering application of ultra-high strength steel, Progress in Steel Building Structure, 10(4), 32(2008)
(施 刚, 石永久, 王元清, 超高强度钢材钢结构的工程应用, 建筑钢结构进展, 10(4), 32(2008))
2 SHI Gang, WANG Yuanqing, SHI Yongjiu, Behavior of high strength steel columns under axial compression, Journal of Building Structures, 30(2), 92(2009)
(施 刚, 王元清, 石永久, 高强度钢材轴心受压构件的受力性能, 建筑结构学报, 30(2), 92(2009))
3 G. Pocock, High strength steel use in Australia, Japan and the US, The Structural Engineer, (11), 27(2006)
4 SHI Gang, SHI Yongjiu, WANG Yuanqing, Analysis on overall buckling behaviour of ultra-high strength steel columns by ANSYS, Journal of Jilin University (Engineering and Technology Edition), 39(1), 113(2009)
(施 刚, 石永久, 王元清, 运用ANSYS 分析超高强度钢材钢柱整体稳定特性, 吉林大学学报(工学版), 39(1), 113(2009))
5 WANG Yuanqing, ZHOU Hui, XI Wang, SHI Yongjiu, Experimental study on mechanical properties of thermit joints of rail steels at low temperature, Transactions of the China Welding Institution, 31(7), 13(2010)
(王元清, 周 晖, 奚 望, 石永久, 铁路钢轨铝热焊接接头的低温力学性能试验, 焊接学报, 31(7), 13(2010))
6 WANG Yuanqing, LIN Yun, ZHANG Yannian, SHI Yongjiu, Experimental study on the fracture toughness of butt weld of Q460C high-strength construction steel, Transactions of the China Welding Institution, 33(9), 5(2012)
(王元清, 林 云, 张延年, 石永久, 高强结构钢材Q460C焊缝连接的断裂韧性试验研究, 焊接学报, 33(9), 5(2012))
7 LIU Xiyue, WANG Yuanqing, SHI Yongjiu, CHEN Hong, Progress on research for brittle facture of steel structure constructed with high-strength steel, Steel Structure (S), 135(2012)
(刘希月, 王元清, 石永久, 陈 宏, 高强度钢材钢结构构造及节点脆性断裂的研究, 钢结构(增刊), 135(2012))
8 International Association for Bridge and Structural Engineering, Use and Application of High-Performance Steels for Steel Structures (Zurich, IABSE, 2005)p.156
9 Y. M. Wu, Y. Q. Wang, Y. J. Shi, Effects of low temperature on properties of structural steels, Journal of University of Science and Technology Beijing, 11(5), 442(2004)
10 WANG Yuanqing, ZHOU Hui, SHI Yongjiu, HU Zongwen, CHEN Hong, Experimental study on fracture toughness of butt weld in thick plate steel structures at low temperature, Journal of Harbin Institute of Technology, 44(6), 115(2012)
(王元清, 周 晖, 石永久, 胡宗文, 陈 宏, 钢结构厚板对接焊缝的低温断裂韧性试验, 哈尔滨工业大学学报, 44(6), 115(2012))
11 J. M. Barsom, S. T. Rolfe, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd edition (ASTM, West Conshohocken, PA., 1999)p.185
12 Y. Q. Wang, H. Zhou, Y. J. Shi, Fracture behavior analyses of welded beam-to-column connections based on elastic and inelastic fracture mechanics, International Journal of Steel Structures, 10(3), 253(2010)
13 WANG Yuanqing, LIN Yun, ZHANG Yannian, SHI Yongjiu, Experimental study on the fracture toughness of Q460C high-strength steel at low temperature, Journal of Jilin University (Engineering and Technology Edition), 42(3), 639(2012)
(王元清, 林 云, 张延年, 石永久, 高强度钢材Q460C断裂韧性低温试验研究, 吉林大学学报 (工学版), 42(3), 639(2012))
14 Bureau of Technical Supervision of the People’s Republic of China, GB/T21143-2007 Metallic materials unified method of test for determination of quasistatic fracture toughness, (Beijing, Standards Press of China, 2007)
(中华人民共和国国家技术监督局, GB/T21143-2007金属材料准静态断裂韧度的统一试验方法, (北京, 中国标准出版社, 2007))
15 WU Yanmin, Research for mechanism of brittle fracture of structural steel and its engineering design method, PhD thesis, Tsinghua University (2004)
(武延民, 钢结构脆性断裂的力学机理及其工程设计方法研究, 博士学位论文, 清华大学 (2004))

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.