Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 302-308    
  研究论文 本期目录 | 过刊浏览 |
酚醛树脂原位催化裂解制备低维碳纳米结构
胡庆华1,2, 王玺堂1, 王周福1, 陈浩2
1.武汉科技大学耐火材料与高温陶瓷国家重点实验室培育基地 武汉 430081
2.九江学院化学与环境工程学院 九江 332005
Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin
HU Qinghua1,2, WANG Xitang1, WANG Zhoufu1,  CHEN Hao2
1.The State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081
2.College of Chemistry and Environment Engineering, Jiujiang University, Jiujiang 332005
引用本文:

胡庆华 王玺堂 王周福 陈浩. 酚醛树脂原位催化裂解制备低维碳纳米结构[J]. 材料研究学报, 2012, 26(3): 302-308.
, , , . Preparation of Low-dimension Carbon Nanostructures via in-situ Catalytic Pyrolysis of Phenolic Resin[J]. Chin J Mater Res, 2012, 26(3): 302-308.

全文: PDF(1075 KB)  
摘要: 以Ni(NO3)2·6H2O为催化剂前躯体, 原位催化裂解酚醛树脂制备了碳洋葱、竹节碳和碳纳米管等低维碳纳米结构;用粉体X--射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等手段对低维碳纳米结构进行了表征。结果表明;当Ni(NO3)2·6H2O与苯酚物质量比小于0.01时, Ni催化剂易分散, 碳纳米管易生成, 管径均一、分布稠密;当Ni(NO3)2·6H2O与苯酚物质量比大于0.04时, Ni催化剂易团聚, 碳纳米管管径分布较宽, 分布稀疏;当Ni(NO3)2·6H2O与苯酚物质量比为0.10时, Ni催化剂团聚现象严重, 难以生成碳纳米管;提出了碳洋葱、竹节碳和碳纳米管不同碳纳米结构可能的形成机理。
关键词 无机非金属材料低维碳纳米结构催化裂解碳纳米管碳洋葱竹节碳    
Abstract:Different low-dimension carbon nanostructures, such as onion-like carbon, bamboolike carbon and carbon nanotubes, were prepared via in-situ catalytic pyrolysis of phenolic resin with Ni(NO3)2·6H2O as catalytic precursor, and characterized by X-ray diffraction, field-emission scanning electron microscope and transmission electron microscopy. The results show that carbon nanotubes with a narrow diameter distribution are more easily formed in a compact mass by a well dispersed Ni catalyst when the molar ratio of Ni(NO3)2·6H2O to phenol is under 0.01. When the ratio of Ni(NO3)2·6H2O to phenol is 0.04 above, Ni catalyst were prone to be aggregated, leading to a widened diameter distribution and sparse growth of carbon nanotube. When the ratio reached to 0.10, a more serious catalytic aggregation was observed and no carbon nanotube was prepared. The possible mechanisms were proposed for the formation of onion-like carbon, bamboo-like carbon and the carbon nanotube.
Key wordsinorganic non-metallic materials    low-dimension carbon nanostructures    catalytic pyrolysis    carbon nanotube    onion-like carbon    bamboo-like carbon
收稿日期: 2011-10-25     
ZTFLH: 

TB332

 
基金资助:

国家自然科学基金50872098和湖北省自然科学基金创新团队2009CDA050资助项目。

1 R.Taylor, G.J.Langley, H.W.Kroto, D.R.M.Walton, Formation of C60 by pyrolysis of naphthalene, Nature, 366(6457), 728(1993)

2 N.I.Alekseyev, G.A.Dyuzhev, Fullerene formation in an arc discharge, Carbon, 41(7), 1343(2003)

3 M.Zhao, H.Song, X.Chen, W.Lian, Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin, Acta Mateialia, 55(18), 6144(2007)

4 H.Abe, Nucleation of carbon onions and nanocapsules under ion implantation at high temperature, Diamond Related Materials, 10(3-7), 1201(2001)

5 Z.H.Wang, C.J.Choi, B.K.Kim, Z.D.Zhang, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vaporcondensation process, Carbon, 41(9), 1751(2003)

6 Y.Lu, Z.Zhu, Z.Liu, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene Carbon, 43(2), 369(2005)

7 L.Yang, P.W.May, L.Yin, J.A.Smith, K.N.Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid, Diamond Related Materials, 16(4–7), 725(2007)

8 G.D.Nessim, M.Seita, K.P.O’Brien, S.A.Speakman, Dual formation of carpets of large carbon nanofibers and thin crystalline carbon nanotubes from the same catalystunderlayer system, Carbon, 48(15), 4519(2010)

9 P.Serp, M.Corrias, P.Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A:General, 253(2), 337(2003)

10 W.Wu, Z.Liu, L.A.Jauregui, Q.Yu, R.Pillai, H.Cao, J.Bao, Y.P.Chen, S.Pei, Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensor and Actuators B:Chemical, 150(1), 296(2010)

11 M.Laskoski, T.M.Keller, S.B.Qadri, Direct conversion of highly aromatic phthalonitrile thermosetting resins into carbon nanotube containing solids, Polymer, 48(26), 7484(2007)

12 N.Kasahara, S.Shiraishi, A.Oya, Heterogeneous graphitization of thin carbon fiber derived from phenolformaldehyde resin, Carbon, 41(8), 1654(2003)

13 K.Okabe, S.Shiraishi, A.Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 s, Carbon, 42(3), 667(2004)

14 C.L.Liu, W.S.Dong, J.R.Song, L.Liu, Evolution of microstructure and properties of phenolic fibers during carbonization, Materials Science and Engineering: A, 459(1–2), 347(2007)

15 XIAO Shaoyi, LIU Hongbo, CHEN Yangfei, HE Yuede, HU Congcong, Carbon(Tan Su), (2), 3(2010)

(肖绍懿, 刘洪波, 陈鸯飞, 何月德, 胡聪聪, 酚醛炭基C/C复合滑板材料的催化石墨化及其性能研究, 炭素, (2), 3(2010))

16 LI Yawei, XIE Ting, ZHAO Lei, Structure and oxidation resistance of pyrolytic carbon from phenol resin-doped Ni2O3 powder, Journal of Wuhan University Science and Technology, 34(1), 18(2011)

(李亚伟, 谢 婷, 赵  雷, 氧化镍掺杂酚醛树脂热解炭的结构及抗氧化性研究, 武汉科技大学学报,  34(1), 18(2011))

17 I.Stamatin, A.Morozan, A.Dumitru, V.Ciupina, G.Prodan, J.Niewolski, H.Figiel, The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins, Physica E:Low-dimensional Systems and Nanostructures, 37(1-2), 44(2007)

18 M.Zhao, H.Song, Catalytic graphitization of phenolic resin, Journal of Materials Science & Technology, 27(3), 266(2011)

19 M.Houll´e, A.Deneuve, J.Amadou, D.B´egin, C.Pham-Huu, Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase, Carbon, 46(1),76(2008)

20 P.Xiao, X.Lu, Y.Liu, L.He, Effect of in situ grown carbon nanotubes on the structure and mechanical properties of unidirectional carbon/carbon composites, Materials Science and Engineering A, 528(7-8), 3056(2011)

21 C.A.Lytle, W.Bertsch, M.McKinley, Determination of novolac resin thermal decomposition products by pyrolysisgas chromatography-mass spectrometry, Journal of Analytical and Applied Pyrolysis, 45(2), 121(1998)

22 W.Brockner, C.Ehrhardt, M.Gjikaj, Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O, Thermochimica Acta, 456(1), 64(2007)

23 DENG Xiaoyan, ZHANG Zhikun, Mechanism and non-isothermal kinetics of thermal decomposition of Ni(NO3)2·6H2O, Journal of Qingdao University Science and Technology (Natural Science Edition), 27(1), 24(2006)

(邓晓燕, 张志焜, Ni(NO3)2·6H2O的热分解机理及非等温动力学参数, 青岛科技大学学报(自然科学版),  27(1), 24(2006))

24 J.Michalowski, D.Mikociak, K.J.Konsztowicz, S.Blazewicz, Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices, Journal of Nuclear Materials, 393(1), 47(2009)

25 A.Gorbunov, O.Jost, W.Pompe, A.Graff, Solid–liquid–solid growth mechanism of single-wall carbon nanotubes, Carbon, 40(1), 113(2002)

26 E.F.Kukovitsky, S.G.L’vov, N.A.Sainov, VLS-growth of carbon nanotubes from the vapor, Chemical Physics Letters, 317(1-2), 65(2000)

27 A.Gorbunov, O.Jost, W.Pompe, A.Graff. Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes. Applied Surface Science, 197-198, 563(2002)

28 O.P.Krivoruchko, V.I.Zaikovskii, A new phenomenon involving the formation of liquid mobile metal–carbon particles in the low-temperature catalytic graphitisation of amorphous carbon by metallic Fe, Co and Ni, Mendeleev Communications, 8(3), 97(1998)

29 S.F.Lee, Y.P.Chang, L.Y.Lee, Effects of annealing Ni catalyst in nitrogen-containing gases on the surface morphology and field-emission properties of thermal chemical vapor deposited carbon nanotubes, New Carbon Materials, 23(4), 302(2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.