Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 295-301    
  研究论文 本期目录 | 过刊浏览 |
用粉煤灰和铁尾矿制备高强混凝土
刘佳,  倪文, 于淼
北京科技大学金属矿山高效开采与安全教育部重点实验室 北京 100083
Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials
LIU Jia, NI Wen, YU Miao
State Key Laboratory of High–Efficient Mining and Safety of Metal Mines, Ministry of Education of China, University of Science and Technology Beijing, Beijing 100083
引用本文:

刘佳 倪文 于淼. 用粉煤灰和铁尾矿制备高强混凝土[J]. 材料研究学报, 2012, 26(3): 295-301.
. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. Chin J Mater Res, 2012, 26(3): 295-301.

全文: PDF(1075 KB)  
摘要: 以粉煤灰和铁尾矿为主要原料制备高强混凝土, 用X射线衍射(XRD)和扫描电镜(SEM)分析材料的水化产物和微观形貌, 研究了铁尾矿掺量、水胶比、高效减水剂用量对高强混凝土力学性能的影响。结果表明, 混凝土的抗压强度为100.1 MPa, 抗折强度为20.6 MPa, 固体废弃物掺量达86.4%;在水化过程中大量C--S--H凝胶和钙矾石的生成为细骨料混凝土提供了早期强度, 火山灰活性反应对Ca(OH)2的消耗是混凝土后期强度持续提高的主要原因。
关键词 无机非金属材料高强混凝土高效减水剂水胶比    
Abstract:A high–strength concrete material was prepared by using fly ash and iron ore tailings as major raw materials. Reaction products and microstructure of hydrated harden samples of the high–strength concrete material were analyzed by XRD and SEM methods, and the influences of several factors, such as proportion of iron ore tailing, water–binder ratio and dosage of super plasticizer, on the mechanical properties of the high–strength concrete material were investigated. The results show that the prepared concrete material is composed of large ratio of solid waste up to 86.4% (mass fraction), and its compressive strength reached to 100.1 MPa with a flexural strength of 20.6 MPa. The early strength of the samples was developed by the formation of large amount of C–S–H gel and ettringite during the early hydration stage. The continued development of strength in the last stage was mainly caused by pozzolanic reactions of the waste materials which leaded consumption, reduction and disappearance of Ca(OH)2 in the system.
Key wordsinorganic non–metallic materials    high–strength concrete material    superplasticizer    water–binder ratio
收稿日期: 2012-03-12     
ZTFLH: 

TB321

 
基金资助:

国家高技术研究发展计划2012AA062405资助项目。

1 MENG Yuehui, NI Wen, ZHANG Yuyan, Current state of ore tailings reusing and its future development in China, China Mine Engineering, 39(5), 4(2010)

(孟跃辉, 倪 文, 张玉燕, 我国尾矿综合利用发展现状与前景, 中国矿山工程,  39(5), 4(2010))

2 LIU Yongguang, WANG Xiaolei, Development of comprehensive utilization of iron tailings as resource, Morden Mining, (2), 28(2010)

(刘永光, 王晓雷,铁尾矿资源化综合利用的发展, 现代矿业, (2), 28(2010))

3 ZHANG Chongmiao,Discussion on the relationship between comprehensive utilization of mineral resources and environmental protection, Mining & Metallurgy, 12(2), 22(2003)

(张崇淼, 矿产资源综合利用与环境保护之关系的探讨, 矿冶,  12(2), 22(2003))

4 YAO Minggang, WANG Jinlong, REN Ruichen, Study and comprehensive utilization of iron ore tailings resources in the Western Liaoning Province, Mining Engineering, 9(4), 53(2011)

(姚明刚, 王金龙, 任瑞晨, 辽宁西部地区铁尾矿资源化综合利用与研究, 矿业工程,  9(4), 53(2011))

5 LIU Anping, ZHANG Jianfeng, Actuality and problem of comprehensive utilization of tailings at meishan, Meishan Science and Technology, (1), 3(2011)

(刘安平, 张剑锋, 梅山尾矿综合利用现状及存在问题, 梅山科技, (1), 3(2011))

6 XING Jun, LV Rong, SONG Shouzhi, Study on the controlled crystallization of glass–ceramics from metallic tailings, Multipurpose Utilization of Mineral Resources, (2), 38(2001)

(邢 军, 吕 荣, 宋守志, 铁尾矿微晶玻璃的组成实际与晶化研究, 矿产综合利用, (2), 38(2001))

7 HUANG Deqi, ZHENG Jianfei, Perform technology research of ordinary dry–mixed mortar made of tailing sand, Fujian Construction Science & Technology, (1), 58(2011)

(黄德棋, 郑剑飞, 尾矿砂制备普通干混砂浆的技术性能研究, 福建建设科技, (1), 58(2011))

8 CHEN Yongliang, ZHANG Yimin, Chen Tiejun, Preparation of eco–friendly construction bricks from hematite tailings, Construction and Building Materials, (25), 2107(2011)

9 YI Zhonglai, SUN Henghu, WEI Xiuquan, Iron ore tailings used for the preparation of cementitious material by compound thermal activation, International Journal of Minerals, Metallurgy and Materials, 16, 355(2009)

10 LI Jing, WANG Qi, LIU Jihui, Synthesis process of forsterite refractory by iron ore tailings, Journal of Environmental Sciences Supplement, 21, S92(2009)

11 LI Chao, SUN Henghu, BAI Jing, Innovative methodology for comprehensive utilization of iron ore tailings Part 1: The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting, Journal of Hazardous Materials, 174, 71(2010)

12 LI Chao, SUN Henghu, YI Zhonglai, Innovative methodology for comprehensive utilization of iron ore tailings Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material, Journal of Hazardous Materials, 174, 78(2010)

13 NI Wen, ZHENG Yongchao, GUO Zhennil, A method of making high strength structural materialwith iron ore tailing, China Patent, 200710177294, 2008–05–21

(倪 文, 郑永超, 郭珍妮, 一种利用铁尾矿制备高强结构材料的方法, 中国专利, 200710177294. 2008--05--21)

14 ZHENG Yongchao, NI Wen, GUO Zhenni, Experimental research on high strength structural material made with iron tailing, New Build Mater, (3), 4(2009)

(郑永超, 倪 文, 郭珍妮, 铁尾矿制备高强结构材料的实验研究, 新型建筑材料, (3), 4(2009))

15 ZHENG Yongchao, NI Wen, XU Li, Mechanochem ical activation of iron ore tailings and preparation of high–strength construction materials, J Univ Sci Technol Beijing, 32(4), 504(2010)

(郑永超, 倪 文, 徐  丽, 铁尾矿的机械力化学活化及制备高强结构材料, 北京科技大学学报,  32(4), 504(2010))

16 WU Junyu, ZENG Rongshu, NI Wen, Research development of high calcium fly ash used in building mateirais, Bulletin of the Chinese Ceramic Society, 26(4), 753(2007)

(武俊宇, 曾荣树, 倪 \ \ 文, 高钙粉煤灰在建材行业的研究进展, 硅酸盐通报,  26(4), 753(2007))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.