Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 618-624    
  研究论文 本期目录 | 过刊浏览 |
含有烧结助剂的复相陶瓷材料烧结过程的元胞自动机模拟
王珉,  赵军,  艾兴,  刘继刚
山东大学机械工程学院高效洁净机械制造教育部重点实验室 济南 250061
Cellular Automata Simulation of the Ceramic Material Sintering Process with Sintering Additives
WANG Min, ZHAO Jun,  AI Xing, LIU Jigang
Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061
引用本文:

王珉 赵军 艾兴 刘继刚. 含有烧结助剂的复相陶瓷材料烧结过程的元胞自动机模拟[J]. 材料研究学报, 2011, 25(6): 618-624.
, , , . Cellular Automata Simulation of the Ceramic Material Sintering Process with Sintering Additives[J]. Chin J Mater Res, 2011, 25(6): 618-624.

全文: PDF(1029 KB)  
摘要: 基于晶界能和晶界曲率的晶粒生长驱动力理论, 建立了含有烧结助剂的复相陶瓷晶粒生长的元胞自动机模型并进行了模拟。结果表明, 烧结助剂对晶界有着强烈的钉扎作用, 其晶粒生长指数小于未含烧结助剂时的生长指数。模拟结果与制备的含有烧结助剂的Al2O3/TiN复相陶瓷材料微观形貌组织吻合, 表明所建立的模型适用于含有烧结助剂的陶瓷材料烧过程模拟。
关键词 无机非金属材料元胞自动机陶瓷材料烧结助剂    
Abstract:A grain growth simulation model for ceramic material sintering process with sintering additives based on cellular automata is constructed based on the grain growth driving force theory of grain boundary energy and the curvature of the grain boundary. The results show that the sintering additives on the grain boundarles have a strong pinning effect. The grain growth index of the ceramic material with sintering additives is lower than that without sintering additives. Add sintering additives can effectively refine the grains The simulation results are in good agreement with the microstructure of Al2O3/TiN ceramic materials with sintering additives. Cellular automata model is applicable to the grain growth simulation of the ceramic material with sintering additives in sintering process.
Key wordsinorganic non-metallic materials    cellular automata    ceramic material    sintering additives
收稿日期: 2011-04-20     
ZTFLH: 

TH145

 
基金资助:

国家重点基础研究发展计划2009CB724402和国家自然科学基金51175310资助项目。

1 R.L.Coble, Sintering crystalline solids: II, experimental test of diffusion models in powder compacts, Journal of Applied Physics, 32(5), 793(1961)

2 FANG Bin, Simulation study on microstructure evolution of ceramic tool materials during fabrication, PhD Thesis, Shandong University(2007)

(方斌, 烧结过程中陶瓷刀具材料微观组织结构演变模拟研究, 山东大学博士学位论文(2007))

3 C.A.Bateman, S.J.Bennison, M.P.Harmer, Mechanism for the role of mgo in the sintering of Al2O3 containing small amounts of a liquid phase, Journal of the American Ceramic Society, 72(7), 1241(1989)

4 S.J.Bennison, M.P.Harmer, A history of the role of MgO in the sintering of Al2O3, Ceramic Transactions, (7), 13(1990)

5 J.Wang, S.Y.Lim, S.C.Ng, C.H.Chew, L.M.Gan, Dramatic effect of a small amount of MgO addition on the sintering of Al2O3–5 vol% SiC nanocomposite, Materials Letters, 33, 273(1998)

6 A.Rittidech, L.Portia, T.Bongkarn, The relationship between microstructure and mechanical properties of Al2O3–MgO ceramics, Materials Science and Engineering A, (438-440), 395(2006)

7 LI Jialiang, NIU Jinye, CHEN Fei, Low temperature sintering of silicon nitride ceramics by spark plasma sintering technique, Journal of the Chinese Ceramic Society, 39(2), 246(2011)

(李家亮, 牛金叶, 陈斐, 低温放电等离子烧结法制备氮化硅陶瓷, 硅酸盐学报,  39(2), 246(2011))

8 NIU Ben, ZHAO Xinliang, WANG Sunhao, LI Baoping, WANG Jieqiang, Effects of sintering additives on preparation and properties of AlN ceramics, Journal of the Chinese Ceramic Society, 38(12), 2257(2010)

(牛锛, 赵新亮, 王孙昊, 李保平, 王介强, 烧结助剂对AlN陶瓷制备及性能的影响, 硅酸盐学报,  38(12), 2257(2010))

9 YANG Haitao, YANG Guotao, YUAN Runzhang, Densificaton and phase transformation during the sintering of Si3N4–MgO–CeO2 ceramics, Journal of Tsinghua University(Science & Technology), 39(5), 126(1999)

(杨海涛, 杨国涛, 袁润章, Si3N4-MgO-CeO$_{2}$陶瓷烧结过程的致密化与相变, 清华大学学报(自然科学版),  39(5), 126(1999))

10 Dierk Raabe, Computational Materials Science (Beijing, Chemical Industry Press, 2002) p.254

(D.罗伯,  计算材料学, (Beijing, Chemical Industry Press, 2002) p.254)

11 Chen I Q, Phase–field models for microstructure evolution, Annual Review of Materials Research, 32, 113(2002)

12 Fan D, Computer Simulation of microstructural evolution in multiphase materials using a diffuse-interface field model, PhD Thesis, The Pennsylvania State University(1996)

13 Bortz A B, Kalos MH, Lebowitz J L, A new algorithm for monte carlo simulation, Journal of Computational Physics, 17, 10(1975)

14 Braginskym, Tikare V, Olevsky E, Numerical simulation of solid state sintering, International Journal of Solid and Structures, 42, 621(2004)

15 Nurminen L, Kuronen A, Kaski K, Kinetic monte carlo simulation of nucleation on patterned substrates, Physical Review B, 63, 35407(2001)

16 Battaile C C, Srolovitz D J, Butler J E, A kinetic monte carlo method for the Atomic Scale simulation of chemical vapor deposition: application to diamond, Journal of Applied Physics, 82, 6293(1997)

17 Raabe D, Hantcherlil, 2D cellular automaton simulation of the recrystallization texture of an if sheet steel under consideration of zener pinning, Computational Materials Science, 34(4), 299(2005)

18 Ding H L, He Y Z, Liu L F, Ding W L, Cellualr automata simulation of grain growth in three dimensions based on the lowest-energy principle, Journal of Crystal Growth, 293(2), 489(2006)

19 He Yizhu, Ding Hanlin, Liu Liufa, Shin K, Computer simulation of 2d grain growth using a cellular automata model based on the lowest-energy principle, Materials Science and Engineering: A, 429(1/2), 236(2006)

20 H.W.Hesselbarth, I.R.G¨obel, Simulation of recrystallization by cellular automata, Acta Metallurgica Et Materialia, 39(6), 2135(1991)

21 Liu Y, Baudin T, Penelle R, Simulation of normal grain by cellular automata, Scripta Materialia, 34(11), 1679(1996)

22 Geiger J, Ro´OSz A, Bark ´OCzy P, Simulation of grain coarsening in two dimensions by cellular automaton, Acta Materialia, 49(4), 623(2001)

23 Ding H L, He Y Z, Liu L F, Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle, Journal of Crystal Growth, 293(2), 489(2006)

24 He Y Z, Ding H L, Liu L F, Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle, Materials Science and Engineering A, 429(1–2), 236(2006)

25 GUAN Xiaojun, MA Xiaofei, WANG Lijun, LIU Yunteng, Simulation on effects of precipitate with various volume fractions on grain growth of material by a modified cellular automaton model, Transactions of Materials and Heat Treatment, 30(2), 178(2009)

(关小军, 麻晓飞, 王丽君, 刘运腾, 应用元胞自动机模型模拟析出相对材料晶粒长大的影响, 材料热处理学报,  30(2), 178(2009))

26 MAO Weimin, ZHAO Xinbing, The Recrystallization and Grain Growth of Material, (Beijing, Metallurgical Industry Press, 1994)

(毛卫民, 赵新兵,  金属的再结晶与晶粒长大, (北京: 冶金工业出版社, 1994))

27 MA Xiaofei, Study on modeling and simulation of recrystallization annealing process for material with second phase particle by cellular automata method, PhD Thesis, Shandong University(2008)

(麻晓飞, 二相粒子材料再结晶退火的元胞自动机模型及其模拟研究, 山东大学博士学位论文(2008))

28 G.N.Hassold, E.A.Holm, D.J.Srolovitz, Effects of particles size of inhibited grain growth, Scripta Metallurgica et Materiala, 24(1), 101(1990)

29 ZHANG Jixiang, GUAN Xiaojun, SUN Sheng, SHEN Xiaomin, DONG Anping, LIU Yunteng, Monte Carlo simulation of microstructure evolution during grain growth, Journal of Shandong University (Engineering Science), 35(4), 1(2005)

30 J.E.Burke, D.Turnbull, Recrystallization and grian growth, Metal Physics, (3), 220(1952)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.