Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 613-617    
  研究论文 本期目录 | 过刊浏览 |
基于4--叔丁基吡啶的染料敏化太阳电池中电子传输研究
奚小网  胡林华  刘伟庆  戴松元
1.中国科学院等离子体物理研究所 新型薄膜太阳电池重点实验室 合肥 230031
2.无锡职业技术学院机电技术学院 无锡 214121
Electron Transport Research in Dye–Sensitized Solar Cells Based on 4–Tert–Butylpyridine
XI Xiaowang, HU Linhua, LIU Weiqing, DAI Songyuan
1.Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of sciences, Hefei 230031
2.The college of Mechanical and Electrical Technology, Wuxi Institute of technology, Wuxi 214121
引用本文:

奚小网 胡林华 刘伟庆 戴松元. 基于4--叔丁基吡啶的染料敏化太阳电池中电子传输研究[J]. 材料研究学报, 2011, 25(6): 613-617.
. Electron Transport Research in Dye–Sensitized Solar Cells Based on 4–Tert–Butylpyridine[J]. Chin J Mater Res, 2011, 25(6): 613-617.

全文: PDF(859 KB)  
摘要: 采用强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)技术, 从电子传输和复合动力学的角度, 研究了DSC的液态电解质中加入TBP后, 电池光伏性能变化的电荷传输机理。研究结果表明: DSC电解质中加入TBP后, TiO2导带边负移, 导致DSC的开路电压明显增大; 同时光生电子注入动力降低, 多孔薄膜中光生电子浓度减少, 电子传输时间τd延长、短路电流密度有所下降。TBP加入后, DSC的光电转换效率相比没有TBP时增加了37\%。
关键词 无机非金属材料电子传输溶胶-凝胶TBP染料敏化太阳电池    
Abstract:The electron transport and back-reaction in DSCs with and without TBP were investigated by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). The results indicate that the increase of the open-circuit voltage was attributed to the negative shift of the TiO2 conduction band potential by the surface adsorption of TBP. The negative shift of the TiO2 conduction band potential reduced the electron injection force and decreased the photoaccumulated charge concentration in the TiO2 film, which increased the electron transit time (τd) and decreased the short-circuit current. Overall, the addition of TBP into the electrolyte increased the efficiency of DSCs by 37%.
Key wordsinorganic non–metallic materials    electron transport    sol–gel    TBP    dye–sensitized    solar cell
收稿日期: 2011-04-15     
ZTFLH: 

TK519

 
基金资助:

国家重点基础研究发展计划2011CBA00700、国家高技术研究发展计划2009AA050603{\&}2011AA050527和中国科学院知识创新工程重要方向KGCX2--YW--326资助项目。

1 B.O’Regan, M.Gr¨atzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737(1991)

2 J.H.Yum, H.B.Robin, S.M.Zakeeruddin, M.K.Nazeeruddin, M.Gr¨atzel, Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO2, Nano Today, 5, 91(2010)

3 D.Kim, P.Roy, K.Lee, P.Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment, Electrochem. Commun., 12(4), 574(2010)

4 M.Pastore, S.Fantacci, F.D.Angelis, Ab initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells, J Phys. Chem. C, 114, 22742(2010)

5 C.C.Tsai, Y.Y.Chu, H.Teng, A simple electrophoretic deposition method to prepare TiO2–B nanoribbon thin films for dye-sensitized solar cells, Thin Solid Films, 519, 662(2010)

6 C.Y.Chen, M.Wang, J.Y.Li, N.Pootrakulchote, L.Alibabaei, C.Ngoc-le, J.D.Decoppet, J.H.Tsai, C.Gr¨atzel, C.G.Wu, S.M.Zakeeruddin, M.Gr¨atzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano, 3(10), 3103(2009)

7 S.Y.Huang, G.Schlichtho1rl, A.J.Nozik, M.Gr¨atzel, A.J.Frank, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, J Phys. Chem. B, 101, 2576(1997)

8 ZHANG Jinxing, CAO Chuanbao, ZHU Hesun, The crystal structure and photoresponse of ZnO thin films fabrication on ITO substrates, Chinese J. Materials Research, 21(3), 235(2007)

(张金星, 曹传宝, 朱鹤荪, ITO上磁控溅射ZnO薄膜及其光电性质, 材料研究学报, 21(3), 235(2007))

9 PENG Yingcai, FU Guangsheng, Approach to quantum dot solar cells, Chinese J. Materials Research, 23(5), 449(2009)

(彭英才, 傅广生, 量子点太阳电池的探索, 材料研究学报, 23(5), 449(2009))

10 ZHAO Jing, LI Yuan, CAI Ning, ZHANG Xiaodan, XIONG Shaozhen, ZHAO Ying, Hydrothermal preparation of one-dimension TiO2 and applied in DSCs, Acta Energiae Solaris Sinica, 31(3), 312(2010)

(赵 静, 李媛, 蔡 宁, 张晓丹, 熊绍珍, 赵 颖, 一维纳米TiO2的水热法制备及其在DSCs电池中的应用, 太阳能学报, 31(3), 312(2010))

11 G.Schlichtho1rl, S.Y.Huang, J.Sprague, A.J.Frank, Band edge movement and recombination kinetics in dyesensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy, J Phys. Chem. B, 101, 8141(1997)

12 S.Nakade, T.Kanzaki, W.Kubo, T.Kitamura, Y.Wada, S.Yanagida, Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I−/I−

3 redox couple, J Phys. Chem. B, 109, 3480(2005)

13 DAI Songyuan, KONG Fantai, HU Linjua, SHI Chengwu, FANG Xiaqin, PAN Xu, WANG Kongjia, Investigation on the dye-sensitized solar cell, Acta Physica Sinica, 54(04), 1919(2005)

(戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉, 染料敏化纳米薄膜太阳电池实验研究, 物理学报, 54(04), 1919(2005))

14 LIANG Linyun, DAI Songyuan, FANG Xiaqin, HU Linhua, Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells, Acta Physica Sinica, 57(03), 1956(2008)

(梁林云, 戴松元, 方霞琴, 胡林华, 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究, 物理学报, 57(03), 1956(2008))

15 L.Dloczik, O.Ileperuma, I.Lauermann, L.M.Peter, E.A.Ponomarev, G.Redmond, N.J.Shaw, I.Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy, J Phys. Chem. B, 101, 10281(1997)

16 M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humpbry-Baker, E.M¨uller, P.Liska, N.Vlachopoulos, M.Gr¨atzel, Conversion of light to electricity by cis-X2Bis (2,2-bipyridyl-4, 4-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=C1−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115(14), 6382(1993)

17 E.Stathatos, P.Lianos, S.M.Zakeeruddin, P.Liska, M.Gr¨atzel, A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid, Chem. Mater., 15(9), 1825(2003)

18 M.Murayama, T.Mori, Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis, Thin Solid Films, 509, 123(2006)

19 K.Hara, Y.Dan-oh, C.Kasada, Y.Ohga, A.Shinpo, S.Suga, K.Sayama, H.Arakawa, Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells, Langmuir, 20, 4205(2004)

20 N.-G.Park, G.Schlichth¨orl, J.van de Lagemaat, H.M.Cheong, A.Mascarenhas, A.J.Frank, Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of  nanocrystalline electrodes formed from the hydrolysis of TiCl4, J Phys. Chem. B, 103, 3308(1999)

21 J.Bisquert, V.S.Vikhrenko, Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells, J Phys. Chem. B, 108, 2313(2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.