Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 566-572    
  研究论文 本期目录 | 过刊浏览 |
EDTA吸附特性及其对α半水脱硫石膏晶形的影响
彭家惠1, 瞿金东2, 张建新1, 邹辰阳1, 陈明凤1
1.重庆大学材料科学与工程学院 重庆 400045
2.重庆大学城市建设与环境工程学院 重庆 400045
Adsorption Characteristics of EDTA on α–Hemihydrate Desulfurization Gypsum Surface and Its Influence on Crystal Morphology
PENG Jiahui1, QU Jindong2, ZHANG Jianxin1, ZOU Chenyang1, CHEN Mingfeng1
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400045
2.Faculty of Urban Construction & Environmental Engineering, Chongqing University, Chongqing 400045
引用本文:

彭家惠 瞿金东 张建新 邹辰阳 陈明凤. EDTA吸附特性及其对α半水脱硫石膏晶形的影响[J]. 材料研究学报, 2011, 25(6): 566-572.
, . Adsorption Characteristics of EDTA on α–Hemihydrate Desulfurization Gypsum Surface and Its Influence on Crystal Morphology[J]. Chin J Mater Res, 2011, 25(6): 566-572.

全文: PDF(1138 KB)  
摘要: 用扫描电镜、显微红外、紫外吸收光谱、X光电子能谱等研究了乙二胺四乙酸(简称EDTA)在α半水石膏表面的吸附特性, 从晶体生长角度分析了EDTA的调晶机理。结果表明: EDTA在α半石膏表面吸附为化学吸附, 其吸附等温线符合Langmuir方程, 最大吸附量为15.2 mg/g, 吸附层厚度6.5 nm; EDTA改变了α半水石膏晶体生长习性与形貌, 晶体在c轴生长被抑制, 晶形有长棒状转变为短柱状, 且晶体尺度增大;EDTA调晶效果对pH值较敏感, EDTA在中性区间调晶效果最佳。EDTA通过羟基与Ca2+的络合作用选择吸附在α半水石膏(111)面, 抑制其c轴方向生长, 使晶体沿c轴方向生长的比较优势被削弱甚至逆转, 导致α半水石膏晶体生长习性和形貌发生变化。
关键词 无机非金属材料α半水脱硫石膏调晶剂吸附晶体形貌    
Abstract:The adsorption characteristics of EDTA on α–hemihydrate desulfurization gypsum surface and its influence on crystalline habit and crystal morphology were studied by use of SEM, MICRO-FTIR, UV adsorption spectrophotometer and XPS technique. Its crystal modifying mechanism was also analyzed from the viewpoint of crystal growth. The results show that the adsorption of EDTA on α–hemihydrate desulfurization gypsum is chemical adsorption. The adsorption isotherms curve basically follows Langmuir equation, its max adsorption amount is 15.2mg and the thickness of adsorption layer 6.5 nm. The addition of EDTA evidently changes the crystalline habit and crystal morphology of α–hemihydrate desulfurization gypsum, and the growth in the C axis direction is inhibited, leading to large crystal size and  transformation of crystal shape from long clavate-like to short prismatic or lamellar -shaped. The crystal modifying effect of EDTA is susceptive to pH values, and the optimum pH condition in liquid phase is neutral. EDTA is selectively chemisorbed on the (111) face of gypsum crystal by complex reaction between hydroxyl and
Ca2+, which inhibits the growth of c axis and weackens the relative advantage of the growth rate of in different c–axis directions, consequently leading to the transformation of crystalline habit and crystal morphology of dihydrate gypsum.
Key wordsinorganic non-metallic materials    α–hemihydrate desulfurization gypsum    crystal modification agent    adsorption    crystal morphology
收稿日期: 2011-03-30     
ZTFLH: 

TQ177.3

 
基金资助:

国家自然科学基金50872160资助项目。

1 LI Zicheng, LI Zhihong, ZHANG Aiju, QIU shuheng, ZHU Yumei. Micro-structures of cementious composite of α-hemihydrate gypsum, Rare Metal Materials and Engineering, 37(21), 307-310(2008)

(李子成, 李志宏, 张爱菊, 邱树恒, 朱玉梅, α--半水石膏基复合胶凝材料体系微观结构分析, 稀有金属材料与工程, 37(21), 307-310(2008))

2 MA Xianfa, GUAN Baohong, Dehydrdtion of α-calcium sulfate hemihydrate in potassium chloride solutions under atmosphericpressure. Journal of the Chinese Ceramic Society, 37(10), 1654-1659(2009)

(马宪法, 官宝红, 常压KCl溶液中α--半水石膏的脱水过程, 硅酸盐学报, 37(10), 1654-1659(2009))

3 Sukimoto Syunji, Hara Naomichi, Mukoyama Hiroshi, Effects of salts on the formation of α–calcium sulfate hemihydrates in aqueous salts solution under the atmospheric presure. Gypsum & Lime, (199), 9-14(1985)

4 WANG Chao, GAO Hefeng, NIE Jihong, ZHENG Xueping, LI Shuhua, FU Guofen, Formation Mechanism and Microstructure of High-Strength Gypsum, Journal of China University of Mining & Technology, 8(1), 50-54(1998)

5 YUE Wenhai, WANG Zhi, Investigation on the mechanism of crystal shape modifying agent of α–hemihydrate, Journal of Wuhan University of Technology, 18(2), 1-4(1996)

(岳文海, 王志, α--半水石膏晶形转化剂作用机理的探讨, 武汉工业大学学报, 18(2), 1--4(1996))

6 BAI Yang, LI Dongxu, Medium crystal agent in highstrength gypsum with flue gas desulphurization gypsum, Journal of the Chinese Ceramic Society, 37(7), 1142–1146(2009)

(白 杨, 李东旭, 用脱硫石膏制备高强石膏粉的转晶剂, 硅酸盐学报, 37(7), 1142-1146(2009))

7 ZHANG Jusong, SUN Peng, JU Cheng, JIN Liang, PENG Bingjie, LI Wencai, NIE Zhiping, Influence of crystal modifier on morphology and strength of α–hemihydrate gypsum prepared by desulfurization gypsum, Journal of Shenyang Jianzhu University(Natural Science), 25(3), 521-525(2009)

(张巨松, 孙蓬, 鞠成, 金亮, 彭丙杰, 李文财, 聂志平, 转晶剂对脱硫石膏制备α--半水石膏形貌及强度的影响, 沈阳建筑大学学报(自然科学版), 25(3), 521-525(2009))

8 WU Xiaoqin, WU Zongbiao. Modification of FGD gypsum in hydrothermal mixed salt solution, Journal of Environmental Science, 18(1), 170–175(2006)

9 Panpa W, Jinawath S. Effect of additives on the properties of alpha–hemihydrate, Advances in Cement Research, (18), 145–152(2006)

10 S.K.Hamdona, O.A.Al Hadad, Influence of additives on the precipitation of gypsum in sodium chloride solutions, Science Direct, 228, 277–286(2008)

11 GUAN Baohong, SHEN Zhuoxian, WU Zhongbiao, YANG Liuchun, MA Xianfa, Effect of pH on the Preparation of α–Calcium Sulfate Hemihydrate from FGD Gypsum with the Hydrothermal Method. Journal of the American Ceramic Society, (12), 3835–3840(2008)

12 Marina Prisciandaro, Amodeo Lancia, Dino Musmarra, Gypsum Nucleation into Sodium Chloride Solutions, AIChE Journal, 47(4), 929-934(2001)

13 M.P.C.Weijnen, G.M.van Rosmalen, P.Bennema, The adsorption of additives at the gypsum crystal surface: a theoretical approach: II Determination of the surface coverage required for growth inhibition, Journal of Crystal Growth, 82, 528–542(1987)

14 A.Ersen, A.Smith, T.Chotard, Effect of malic and citric acid on the crystallisation of gypsum investigated by coupled acoustic emission and electrical conductivity techniques, J Mater Sci, 41, 7210–7217(2006)

15 M.H.H.Mahmoud, M.M.Rashad, I.A.Ibrahim, E.A.Abdel-Aal, Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents, Journal of Colloid and Interface Science, 270, 99–105(2004)

16 Wuhan University, Analytical Chemistry(fourth edition) (Higher education press, 2004) p.229 

(武汉大学编,  分析化学(第四版), (高等教育出版社, 2004), p.229)

17 Wuhan University, Analytical Chemistry (fourth edition) (Higher education press, 2004) p.230

(武汉大学编, 分析化学(第四版), (高等教育出版社, 2004) p.230)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.