Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 391-398    
  研究论文 本期目录 | 过刊浏览 |
纳米Ni60--TiB2复合涂层的超音速火焰喷涂制备及600oC循环氧化特性
吴姚莎, 邱万奇, 余红雅, 钟喜春, 刘仲武, 曾德长, 李尚周
华南理工大学材料科学与工程学院 广州 510640
HVOF Preparation and Cycle Oxidation Behavior at 600oC of Nanostructured Ni60–TiB2 Composite Coating
WU Yaosha, QIU Wanqi, YU Hongya, ZHONG Xichun, LIU Zhongwu, ZENG Dechang, LI Shangzhou
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

吴姚莎 邱万奇 余红雅 钟喜春 刘仲武 曾德长 李尚周. 纳米Ni60--TiB2复合涂层的超音速火焰喷涂制备及600oC循环氧化特性[J]. 材料研究学报, 2011, 25(4): 391-398.
. HVOF Preparation and Cycle Oxidation Behavior at 600oC of Nanostructured Ni60–TiB2 Composite Coating[J]. Chin J Mater Res, 2011, 25(4): 391-398.

全文: PDF(1294 KB)  
摘要: 采用超音速火焰喷涂技术在45#钢基体表面制备纳米Ni60--TiB2复合涂层, 研究了纳米和常规微米Ni60--TiB2复合涂层在静态大气环境下600oC的循环氧化行为。结果表明: 纳米Ni60--TiB2涂层具有晶粒纳米化和微观组织均匀化的特点, 其氧化膜由完整连续SiO2膜构成, 在其上均匀地分布着细小的TiO2颗粒和B2O3膜。纳米涂层和微米涂层的循环氧化都为扩散控制机制, 但是在纳米涂层表面生成了连续致密的SiO2膜。晶粒纳米化降低了涂层内应力, 提高了膜基结合力, 保证了氧化膜的完整性, 因此使Ni60--TiB2复合涂层具有更优的抗氧化性能。
关键词 材料失效与保护表面科学纳米涂层循环氧化HVOFTiB2    
Abstract:Cycle oxidation resistance of a nanostructured Ni60–TiB2 composite coating sprayed by high velocity oxy–fuel(HVOF) at 600oC  in static air was investigated. The conventional Ni60–TiB2 composite coating was also investigated for comparison. The results show that oxide scale on the nanostructured Ni60–TiB2 composite coating consist of complete and continuous SiO2 scale, the fine uniform dispersed TiO2 particles and B2O3 scale spread on the serface of oxide scale.The oxidation process of the nanostructured and conventional Ni60–TiB2 composite coatings are controlled by a diffusion mechanism, and the nanostructured Ni60–TiB2 composite coating exhibits better cycle oxidation resistance than that of the conventional composite coating. The reasons can be attributed to the formation of the intact SiO2 protective layer, and the enhanced adhesion between oxide film and nanocrystalline coating.
Key wordsmaterials failure and protection    surface science    nanostructured coating    cycle oxidation    HVOF    TiB2
收稿日期: 2011-04-01     
ZTFLH: 

TB383

 
基金资助:

广东省部产学研计划和省科技计划2009A090100045, 2010A090200077,1011020500021和中山市科技计划20103A262资助项目。

1 T.S.Sidhu, S.Prakash, R.D.Agrawal, Characterizations and hot corrosion resistance of Cr3C2–NiCr coating on Ni–base superalloys in an aggressive environment, Journal of Thermal Spray Technology, 15, 811(2006)

2 J.Stringer, Coatings in the electricity supply industry: past, present, and opportunities for the future, Surface and Coatings Technology, 108-109, 1(1998)

3 M.Mohanty, R.W.Smith, M.De Bonte, Sliding wear behavior of thermally sprayed 75/25 Cr3C2/NiCr wear resistant coatings, Wear, 198, 251(1996)

4 M.Roy, A.Pauschitz, J.Bernardl, Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2–25(Ni20Cr) coating, Journal of Thermal Spray Technology, 15, 372(2006)

5 A.J.Horlock, D.G.McCartney, P.H.Shipway, Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior, Materials Science and Engineering A, 336, 88(2002)

6 M.Jones, A.J.Horlock, P.H.Shipway, A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide- and titanium boride-based cermet coatings, Wear, 251, 1009(2001)

7 B.Lotfi, P.H.Shipway, D.G.McCartney, Abrasive wear behavior of Ni(Cr)-TiB2 coatings deposited by HVOF spraying of SHS-derived ceramic powders, Wear, 254, 340(2003)

8 R.A.Cutler, Engineered Materials Handbook: Ceramics and Glasses, vol. 4(Ohio, ASM International, 1991) p.787

9 Y.C.Zhu, Y.Ken, C.X.Ding, Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying, Thin Solid Films, 388, 277(2001)

10 X.J.Zhang, G.J.He, C.Y.Dong, Microstructure and properties of Al2O3–13% TiO2 coatings sprayed using nanostructured powders, Rare Metals, 26, 391(2007)

11 J.O.Berghaus, B.Marple, C.Moreau, Suspension plasma spraying of nanostructured WC-12Co coatings, Journal of thermal spray technology, 15, 676(2006)

12 S.L.Liu, D.B.Sun, Z.S.Fan, The influence of HVAF powder feedstock characteristics on the sliding wear behavior of WC-NiCr coatings, Surface and Coatings Technology, 202, 4893(2008)

13 D.B.Lee, M.H.Kim, C.W.Yang, The oxidation of TiB2 particle-reinforced TiAl intermetallic composites, Oxidation of metals, 56, 215(2001)

14 A.Q.Ma, Z.M.Zhang, M.X.Jiang, The thermodynamic analysis on the oxidation of TiB2 material, Bulletin of the Chinese ceramic society, 28, 162(2009)

15 B.Lotfi, Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating, Transactions of Nonferrous Metals Society of China, 18, 262(2008)

16 S.Sampath, X.Y.Jiang, J.Matejicek, Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I :Case study for partially stabilized zirconium, Materials Science and Engineering A, 272, 181(1999)

17 X.Jiang, J.Matejicek, S.Sampath, Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings Part II: case study for molybdenum, Materials Science and Engineering A, 272, 189(1999)

18 K.Tao, X.L.Zhou, H.Cui, J.S.Zhang, Oxidation and hot corrosion behaviors of HVAF-sprayed conventional and nanostructured NiCrC coatings, Transactions of Nonferrous Metals Society of China, 19, 1151(2009)

19 S.Matthews, M.Hyland, B.James, Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings, Acta Materialia, 51, 4267(2003)

20 H.Luo, D.Goberman, L.Shaw, Indentation fracture behavior of plasma-sprayed nanostructured Al2O3–13wt.%TiO2 coatings, Materials Science and Engineering A, 346, 237(2003)

21 M.Gell, E.H.Jordan, Y.H.Sohn, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surface and coatings technology, 146, 48(2001)

22 R.S.Lima, B.R.Marple, Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock, Materials Science and Engineering A, 395, 269(2005)

23 LI Meishuan, High temperature corrosion of metal (Beijing, metallurgical press, 2001) p.181

(李美栓,  金属的高温腐蚀  (北京, 冶金工业出版社, 2001) p.181)

24 C.Wagner, Reaktionstypen bei der oxidation von legierungen, Z.Elektrochem, 63, 772(1959)

25 G.J.Cao, L.Geng, Z.Z.Zheng, The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 15, 1672(2007)

26 F.H.Wang, Oxidation Resistance of Sputtered Ni3(A1Cr) Nanocrystalline Coating, Oxidation of Metals, 47, 247(1997)

27 F.Wang, H.Lou, S.Zhu, The mechanism of scale adhesion on sputtered microcrystalline CoCrAl films, Oxidation of metals, 45, 39(1996)

28 D.Y.Lee, M.L.Santella, I.M.Anderson, Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy, Intermetallics, 13, 87(2005)

29 H.J.T.Ellingham, Transactions and communications, Journal of the Society of Chemical Industry, 63, 125(1944)

30 D.Chaliampalias, G.Vourlias, E.Pavlidou, Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings, Applied Surface Science, 255, 3605(2009)
[1] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.