Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 386-390    
  研究论文 本期目录 | 过刊浏览 |
纳米铝粒子电极的脱/嵌锂离子特性
赵亚楠1, 薛方红1,  黄 昊1,  刘春静1,   甘小荣2,   董星龙1
1.大连理工大学材料科学与工程学院 大连 116024
2.大连理工大学化工与环境生命学部 大连 116024
Lithium Ion Intercalation/Deintercalation Properties of Aluminum Nanoparticles as Anode Materials for Li–ion Batteries
ZHAO Yanan1,  XUE Fanghong1,  HUANG Hao1,  LIU Chunjing1,  GAN Xiaorong2,  DONG Xinglong1
1.School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024
2.Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024
引用本文:

赵亚楠 薛方红 黄 昊 刘春静 甘小荣 董星龙. 纳米铝粒子电极的脱/嵌锂离子特性[J]. 材料研究学报, 2011, 25(4): 386-390.
, , , . Lithium Ion Intercalation/Deintercalation Properties of Aluminum Nanoparticles as Anode Materials for Li–ion Batteries[J]. Chin J Mater Res, 2011, 25(4): 386-390.

全文: PDF(1131 KB)  
摘要: 用直流电弧等离子体气相蒸发法制备球状Al纳米粒子, 并对其进行了XRD、TEM以及电极的脱/嵌锂离子循环性能表征。结果表明, 制备出的Al粒子大小约为100 nm, 表面包覆一层厚度不到1nm的非晶氧化物。使用Al纳米粒子制做的负极极片组装电池, 研究了电流密度对其电化学特性的影响。结果表明, 电池的首次充放电曲线和前10次循环性能曲线表明, 电流密度最小的Al电极首次放电容量最大, 为951.9 mAh/g, 首次容量损失也最大, 其循环稳定性能也相应变差; 而电流密度最大的Al电极首次放电容量为879.7 mAh/g, 其循环稳定性能最佳。首次放电结束后, 在电极材料中出现了两种化合物AlLi和Al2Li3, 与测试出的放电容量相符。
关键词 复合材料锂离子电池铝纳米粒子负极材料直流电弧等离子体法    
Abstract:Aluminum nanoparticles were fabricated by a physical vapor condensation method (DC arc discharge). The samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and galvanostatic cycling. Al particle size is about 100 nm, and it is coated by amorphous Al2O3. Anode slurries prepared were consisted of Al powder, acetylene black and polyvinylidene fluoride (PVDF) binder. The effects of current density on the electrochemical properties were investigated. The results show that Al electrode for the minimal current density delivers the highest initial discharge capacity (Li intercalation process) of 951.9 mAh/g but cycle life is poor. Al electrode for the maximal current density delivers initial discharge capacities of 879.7 mAh/g and possesses relatively good cycleability. After the initial discharge only two composites (AlLi and Al2Li3) in Al electrode are found, which correspond to the initial discharge capacity.
收稿日期: 2011-04-08     
ZTFLH: 

TQ152

 
基金资助:

高等学校博士学科点专项科研基金资助课题20100041110032资助项目。

1 FU Wenli, Progress in research on materials for lithiumion batteries, Chinese Journal of Power Sources, 133(9), 822(2009)

(付文莉, 锂离子电池电极材料的研究进展, 电源技术,  133(9), 822(2009))

2 K.R.Kganyago, P.E.Ngoepe, C.R.A Catlow, Ab initio calculation of the voltage profile for LiC6, Solid State lonics., 159(1), 21(2003)

3 Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto, Shin Fujitani, Maruo Kamino, Ikuo Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes, Journal of Power Sources., 107(1), 48(2002)

4 T.D.Hatchard, J.R.Dahn, Study of the electrochemical performance of sputtered Si1−xSnx films, Journal of the Electrochemical Society., 151(10), A1628(2004)

5 Y.Hamon, T.Brousse, F.Jousse, P.Topart, P.Buvat, D.M.Schleich, Aluminum negative electrode in lithium ion batteries, Journal of Power Sources., 97-98, 185(2001)

6 Xuefeng Lei, ChiweiWang, Zonghui Yi, Yongguang Liang, Jutang Sun, Effects of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries, Journal of Alloys and Compounds., 429, 311(2007)

7 Z.Y.Wang, Y.Li, J.Y.Lee, Characterizations of Al-Y thin film composite anode materials for lithium-ion batteries, Electrochemistry Communications., 11, 1179(2009)

8 Renzong Hu, Meiqin Zeng, Chi Ying Vanessa Li, Min Zhu, Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al–Sn system, Journal of Power Sources., 188, 268(2009)

9 M.D.Fleischauer, M.N.Obrovac, J.R.Dahn, Al-Si Thin-Film Negative Electrodes for Li-Ion Batteries, Journal of the electrochemical society., 155(11), A851(2008)

10 Xue-feng Lei, Jun-xian Ma, Synthesis and Electrochemical Performance of Aluminum Based Composites, J. Braz. Chem. Soc., 21(2), 209(2010)

11 DONG Xinglong, SUN Weimin, WANG Wei, LI Zhijie, A method and equipment of automatic DC are discharge for metal nanoparticles production, Chinese Patent, CN200410021190.1(2004)

(董星龙, 孙维民, 王  维, 李志杰, 一种自动控制直流电弧金属纳米粉生产设备及方法, 中国专利, CN200410021190.1(2004))

12 X.L.Dong, Z.D.Zhang, X.G.Zhao, Y.C.Chuang, S.R.Jin, W.M. Sun, The preparation and characterization of ultrafine Fe-Ni particles, J Mater Res., 14, 398(1999)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.