Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 205-208    
  研究论文 本期目录 | 过刊浏览 |
Mn4+--掺杂锂钒氧化物的合成及其电化学性能
陈一维1, 张颖1, 汪大云2, 韩恩山1
1.河北工业大学化工学院 天津 300130
2.河北工业大学理学院 天津 300130
Synthesis and Electrochemical Performance of Mn4+ Doped Lithium Vanadium Oxide
CHEN Yiwei1, ZHANG Ying1,  WANG Dayun2,  HAN Enshan1
1.School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130
2.School of Sciences, Hebei University of Technology, Tianjin 300130
引用本文:

陈一维 张颖 汪大云 韩恩山 . Mn4+--掺杂锂钒氧化物的合成及其电化学性能[J]. 材料研究学报, 2011, 25(2): 205-208.
, , , . Synthesis and Electrochemical Performance of Mn4+ Doped Lithium Vanadium Oxide[J]. Chin J Mater Res, 2011, 25(2): 205-208.

全文: PDF(836 KB)  
摘要: 以LiOH ? H2O、NH4VO3和Mn(CH3COO)2 4H2O为原料, 以柠檬酸(C6H8O7 ? H2O)为络合剂, 用凝胶溶胶法按xLiV3O8 yLiMn2O4(x:y=1:0, 4:1, 8:1, 12:1, 16:1)合成出锂离子电池正极材料Mn4+--LiV3O8, 并对其结构和电化学性能进行了研究。结果表明, 用该法制备的样品具有良好的层状晶体结构和良好的充放电性能。 当x : y = 12 : 1时, 在1.8--3.8 V范围内以0.1 C 倍率循环时, 首次放电比容量高达387.9 mAh/g, 比未掺杂Mn4+时(299.9 mAh/g)提高了29.3%。经过30次循环后, 放电比容量仍保持为376.4 mAh/g, 充放电效率维持在97%以上。
关键词 无机非金属材料锂离子电池正极材料掺杂循环伏安溶胶凝胶法    
Abstract:According to the stoichiometric ratio of xLiV3O8·yLiMn2O4 (x:y=1:0, 4:1, 8:1, 12:1, 16:1), lithium vanadium oxide Mn4+–LiV3O8 was synthesized by a sol–gel method with LiOH·H2O, NH4VO3, Mn(CH3 COO)2·4H2O and C6 H8O7·H2O as starting materials, and its electrochemical characterization and structure has been investigated. The results show that the Mn4+–LiV3O8 made by sol–gel method has well–developed crystal structure of layered LiV3O8 and a good charge–discharge characterization. The initial discharge specific capacity with Mn4+ doping at x:y=12:1 reaches 387.9 mAh/g, which is 29.3% larger than that of pure material (299.9 mAh/g), and keeps 376.4 mAh/g after 30 cycles when cycles at 0.1C rate over the voltage range of 1.8–3.8 V. Further-more, the material preserves a high charge-discharge efficiency above 97%.
Key wordsinorganic non-metallic    lithium-ion battery cathode material    doping    cyclic voltammogram    sol-gel method
收稿日期: 2010-08-16     
ZTFLH: 

TM912

 
1 Wadsley, Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8, Acta Cryst., 10, 261(1957)

2 Jouanneau S, Verbaere A, Guyomard D, A combined Xray and neutron Rietveld study of the chemically lithiated electrode materials Li2.7V3O8 and Li4.8V3O8, Journal of Solid State Chemistry, 178(1),22(2005)

3 LIU Liying, TIAN Yanwen, ZHAI Yuchun, XU Chaqing, Influence of Cr3+ doping on structure and electrochemical properties of Li1.05V3O8, Chinese Journal of Materials Research, 20(4),412(2006)

4 Jin Kawakita, HiroakiMori, Takashi Miura, Tomiya Kishi, Formation process and structural characteristics of layered hydrogen vanadium, Solid State Ionics, 131(3), 229(2000)

5 M.Dubarry, J.Gaubicher, D.Guyomard, N.Dupr´e, C.Grey, Ultrafast synthesis of Li1+αV3O8 gel precursors for lithium battery applications, Solid State Ionics, 180(32), 1511(2009)

6 S.H.Ju, Y.C.Kang, Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis, Electrochim.Acta, 55(2), 6088(2010)

7 A.Sakunthala, M.V.Reddy, S.Selvasekarapandian, B.V.R.Chowdari, P.C.Selvin, Preparation, Characterization, and Electrochemical Performance of Lithium Trivanadate Rods by a Surfactant-Assisted Polymer

Precursor Method for Lithium Batteries, J.Phys.Chem.C, 114(17), 8099(2010)

8 Manev V, Momchilov A, Nassalevska A, Pistoia G, Pasquali M, A new approach to the improvement of Li1+xV3O8 performance in rechargeable lithium batteries, J Power Sources, 54(2), 501(1995)

9 F.Wu, L.Wang, C.Wu, Y.Bai, F wang, Study on Li1+xV3O8 synthesized by microwave sol-gel route, Materials Chemistry and Physics, 115(2), 707(2009)

10 SUN Junli, PENG Wenxiu, SONG Dawei, WANG Qinghong, DU Hongmei, JIAO Lifang, SI Yuchang, YUAN Huatang, Electrochemical properties of facile emulsified LiV3O8 materials, Materials Chemistry and Physics, 124, 248(2010)

11 Pistoia G, Pasquali M,Wang G, Li/Li1+xV3O8 Secondary Batteries, J. Electrochem. Soc., 137(8), 2365(1990)

12 J.Desilvestro, O.Haas, Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review, J. Electrochem. Soc., 137(1), 5C(1990)

13 Li Liu, Lifang Jiao, Junli Sun, Yanhui Zhang, Ming Zhao, Huatang Yuan, Yongmei Wang, Electrochemical performance of LiV3+xNixO8 cathode materialssynthesized by a novel low-temperature solid-state method, Electrochimica Acta, 53(24), 7321(2008)

14 SUN Junli, JIAO Lifang, YUAN Huatang, LIU Li, WEI Xin, MIAO Yanli, YANG Lin, WANG Yongmei, Preparation and electrochemical performance of AgxLi1−xV3O8, Journal of Alloys and Compounds, 472(1), 363(2009)

15 FENG Jijun, LIU Xiaozhen, LIU Xiangzhe, ZHANG Xiaomei, JIANG Jianzhuang, ZHAO Jing, WANG Min, Hydrothermal Synthesis of LiV3−xAlxO8 and Its Performance as Positive Electrode Material for Lithium-Ion Batteries, Chinese Journal of inorganic Chemistry, 25(8),1379(2009)

(冯季军, 刘晓贞, 刘祥哲, 张晓梅, 姜建壮, 赵静, 王敏, 锂离子电池正极材料LiV3-xAlxO8的水热合成与性能, 无机化学学报, 25(8),1379(2009))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.