Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 183-186    
  研究论文 本期目录 | 过刊浏览 |
锡催化生长氧化硅纳米线的制备和表征
倪自丰, 刘利国, 王永光
江南大学机械工程学院 无锡 214122
Synthesis and Characterization of Silica Nanowires Catalysted by Tin
NI Zifeng LIU Liguo WANG Yongguang
School of Mechanical Engineering, Jiangnan University, Wuxi 214122
引用本文:

倪自丰 刘利国 王永光. 锡催化生长氧化硅纳米线的制备和表征[J]. 材料研究学报, 2011, 25(2): 183-186.
, , . Synthesis and Characterization of Silica Nanowires Catalysted by Tin[J]. Chin J Mater Res, 2011, 25(2): 183-186.

全文: PDF(740 KB)  
摘要: 使用高纯SnO2粉和石墨粉混合物作为锡催化剂的来源, 硅片作为硅的来源和产物生长的基底, 用化学气相沉积法在硅片上准备了有序排列的氧化硅纳米线组成的微米结构, 用扫描电子显微镜(SEM)、X--射线能谱仪(EDX)、透射电子显微镜(TEM)和选区电子衍射谱图(SAED)对其进行了表征。结果表明: 直径为5--15 μ m, 长度达到50--100 μm的微米结构由紧密排列的非晶氧化硅纳米线组成, 氧化硅纳米线的直径为100--200 nm, 长度达到50--100 μm。根据对其生长过程的分析, 锡催化生长表现出不同于传统的VLS机制, 一颗锡催化剂液滴能同时诱导多根纳米线的生长。根据室温下的光致发光谱分析, 非晶氧化硅纳米线在395 nm(3.14 eV)处有一强峰, 激发波长为260 nm(4.77 eV)。
关键词 无机非金属材料氧化硅纳米线化学气相沉积碳热还原法光致发光    
Abstract:A novel micro–structure which consists of highly aligned and closely packed silica nanowires has been synthesized by using chemical vapor deposition (CVD) process. The tin droplets were supplied by carbothermal reduction of SnO2 powders as catalyst, and the source and substrate of the growth of silica nanowires was silicon wafers. This novel micro–structure was investigated by the scanning electron microscopy (SEM), energy–dispersive X–ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses. It was found that the diameters of the novel micro–structures and the amorphous silica nanowires are 5–15 μm and 100–200 nm with the same length of 50–100 μm, respectively. Finally, it is of interest to note that, each tin droplet can simultaneously catalyze the growth of several silica nanowires, which is quite different from the conventional vapor–liquid–solid process, and the silica nanowires tend to grow batch by batch. The PL spectra of the SiO2 nanowires showe a strong light at 395nm (3.14 eV) under excitation at 260 nm (4.77 eV).
Key wordsinorganic non–metallic materials    silica nanowires    chemical–vapor–deposition (CVD)    carbothermal reduction    photoluminescence
收稿日期: 2010-09-01     
ZTFLH: 

O469

 
基金资助:

中央高校基本科研业务费专项资金JUSRP11115资助项目。

1 Z.L.Wang, Z.Dai, S.Sun, Polyhedral Shapes of Cobalt Nanocrystals and Their Effect on Ordered Nanocrystal Assembly. Advanced Materials, 12(24), 1944(2000)

2 S.Bhowmick, K.Alam, Effects of source–drain underlaps on the performance of silicon nanowire on insulator transistors. Nano–Micro Letters, 2(2), 83(2010)

3 D.P.Yu, Q.L.Hang, Y.Ding, H.Z.Zhang, Z.G.Bai, J.J.Wang, Y.H.Zou, W.Qian, G.C.Xiong, S.Q.Feng, Amorphous silica nanowires: Intensive blue light emitters. Applied Physics Letters, 73, 3076(1998)

4 Q.Wei, G.W.Meng, X.H.An, Y.F.Hao, L.D.Zhang, Synthesis and photoluminescence of aligned straight silica nanowires on Si substrate. Solid State Communications, 138(7), 325(2006)

5 J.Y.Yang, S.G.Lu, S.R.Kan, X.J.Zhang, J.Du, Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride, Chemical Communications, 22, 3273(2009)

6 A.Katz, M.E.Davis, Molecular imprinting of bulk, microporous silica, Nature, 403, 286(2000)

7 D.K.Sood, P.K.Sekhar, S.Bhansali, Ion implantation based selective synthesis of silica nanowires on silicon wafers. Applied Physics Letters, 88(14), 3110(2006)

8 C.H.Liang, L.D.Zhang, G.W.Meng, Y.W.Wang, Z.Q.Chu, Preparation and characterization of amorphous SiOx nanowires, Journal of Non–Crystalline Solids, 277(1), 63(2000)

9 B.Zheng, Y.Y.Wu, P.D.Yang, J.Liu, Synthesis of Ultra–Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys. Advanced Materials, 14(2), 122(2002)

10 S.H.Sun, G.W.Meng, M.G.Zhang, Y.T.Tian, T.Xie, L.D.Zhang, Preparation and characterization of oriented silica nanowires, Solid State Communications, 128(8), 287(2003)

11 Z.W.Pan, Z.R.Dai, C.Ma, Z.L.Wang, Molten gallium as a catalyst for the large–scale growth of highly aligned silica nanowires, Journal of American Chemical Society, 124(41), 1817(2002)

12 Y.Q.Zhu, W.K.Hsu, M.Terrones, N.Grobert, W.B.Hu, J.P.Hare, H.W.Kroto, D.R.M. Walton. Microscopy study of the growth process and structural features of silicon oxide nanoflowers, Chemistry of Materials, 11(10), 2709(1999)

13 Y.Q.Zhu, W.K.Hsu, M.Terrones, N.Grobert, H.Terrones, J.P.Hare, H.W.Kroto, D.R.M.Walton, 3D Silicon oxide nanostructures: from nanoflowers to radiolaria, Journal Materials Chemistry, 8(8), 1859(1998)

14 Y.W.Wang, C.H.Liang, G.W.Meng, X.S.Peng, L.D.Zhang, Synthesis and photoluminescence properties of amorphous SiOx nanowires, Journal Materials Chemistry, 12, 651(2002)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.