Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 113-117    
  研究论文 本期目录 | 过刊浏览 |
微波辐射增强改性三维壳聚糖棒材
王征科, 胡巧玲, 李友良, 戴卓君
浙江大学高分子系教育部高分子合成与功能构造重点实验室 杭州 310027
Three Dimensional Chitosan Rods Reinforced by Microwave Irradiation
WANG Zhengke, HU Qiaoling, LI Youliang,  DAI Zhuojun
Department of Polymer Science and Engineering, Zhejiang University, Key laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Hangzhou 310027
引用本文:

王征科 胡巧玲 李友良 戴卓君. 微波辐射增强改性三维壳聚糖棒材[J]. 材料研究学报, 2011, 25(2): 113-117.
, , , . Three Dimensional Chitosan Rods Reinforced by Microwave Irradiation[J]. Chin J Mater Res, 2011, 25(2): 113-117.

全文: PDF(908 KB)  
摘要: 通过微波辐射热致交联的方法增强改性三维壳聚糖棒材。结果表明, 辐射一定时间后发生的交联反应提高了壳聚糖溶液的旋转粘度; 继续增加辐射时间, 由于壳聚糖的热交联反应和热分解碳化同时并存, 壳聚糖溶液的旋转粘度反而下降了。交联和高温碳化对壳聚糖分子链产生化学和物理的固定作用, 使其吸水膨胀困难, 从而降低了壳聚糖棒材的吸水率。热交联反应使壳聚糖分子链间形成体型网络状结构, 从而有效地改善了三维壳聚糖棒材的力学性能。微波辐射4 min后, 壳聚糖棒材的弯曲强度和弯曲模量可达182.8 MPa、5.6 GPa, 比未辐射的壳聚糖棒材分别提高了97.8%、36.6%。
关键词 有机高分子材料生物材料微波辐射壳聚糖增强改性    
Abstract:The chitosan (CS) rods were reinforced by thermal cross-linking method through microwave irradiation. The results show that the rotary viscosity of CS solution was increased due to thermal cross-linking reaction, but much more irradiation time would decrease its solution viscosity because of thermal decomposition. Crystallinity of CS was reduced due to the formation of network structure. Bending strength and bending modulus of microwave irradiated CS rods maximized at 182.8 MPa and 5.6 GPa, increased by 97.8% and 36.6% respectively, compared with untreated CS rods. The improvement of mechanical properties can be
attributed to the formation of network structure.
Key wordsorganic polymer materials    biomaterials    microwave irradiation    chitosan    reinforcement
收稿日期: 2010-11-22     
ZTFLH: 

TB324

 
基金资助:

国家重点基础研究发展计划2009CB930104, 国家自然科学基金50773070, 中国博士后基金20100480085, 浙江省重大科技专项2008C11087资助项目。

1 TAO Mingtao, YU Xiangan, Research status and advances on the complex drug delivery system for the treatment of nonunion, China Pharmacy, 18(20), 1586(2007)

(陶明涛, 于香安, 治疗``骨不连''的复合释药系统研究现状与进展. 中国药房, 18(20), 1586(2007))

2 WANG Zhengmei, FAN Shuxian, XIE Xuejian, GAO Guizhi, Research progress on bone fracture internal fixation materials, Journal of Nantong UniversityqMedical Sciences, 25(3), 229(2005)

(王正梅, 樊曙先, 谢学俭, 高桂芝, 骨折内固定器材料的研究进展, 南通大学学报:医学版, 25(3), 229(2005))

3 M.Van der elst, A.R.A.Dijkema, C.P.A.T.Klein, P.Patka, H.J.T.M. Haarman, Tissue reaction on PLLA versus stainless steel interlocking screws for fracture fixation: an animal study, Biomaterials, 16, 103(1995)

4 C.M.Agrawal, K.A.Athanasiou, Technique to control pH in vicinity of biodegrading PLA-PGA implants, Journal of Biomedical Materials Research, 38(2), 105(1997)

5 K.S.Katti, D.R.Katti, R.Dash, Synthesis and characterization of a novel chitosan/ montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering, Biomedical Materials, 3(3), 34122(2008)

6 T.Honma, T.Senda, Y.Inoue, Thermal properties and crystallization behaviour of blends of poly(ε-caprolactone) with chitin and chitosan, Polymer International, 52(12), 1839(2003)

7 V.G.Mir, J.Heinamaki, O.Antikainen, O.B.Revoredo, A.I.Colarte, O.M.Nieto, J.Yliruusi, Direct compression properties of chitin and chitosan, European Journal of Pharmaceutics and Biopharmaceutics, 69(3), 964(2008)

8 B.Krajewska, Membrane-based processes performed with use of chitin/chitosan materials, Separation and Purification Technology, 41(3), 305(2005)

9 Y.C.Kuo, I.N.Ku, Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds, Biomacromolecules, 9(10), 2662(2008)

10 HU Qiaoling, QIAN Xiuzhen, LI Baoqiang, SHEN Jiacong. Studies on chitosan rods prepared by in situ precipitation method, Chemical Journal of Chinese Universities-Chinese, 24(3), 528(2003)

(胡巧玲, 钱秀珍, 李保强, 沈家骢, 原位沉析法制备壳聚糖棒材的研究, 高等学校化学学报, 24(3), 528(2003))

11 L.Y.Lim, E.Khor, C.E.Ling, Effects of dry heat and saturated steam on the physical properties of chitosan, Journal of Biomedical Materials Research, 48(2), 111(1999)

12 J.M.Wasikiewicz, F.Yoshii, N.Nagasawa, R.A.Wach, H.Mitomo, Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods, Radiation Physics and Chemistry, 73(5), 287(2005)

13 G.Cardenas, J.Diaz, M.F.Melendrez, C.Cruzat, Physicochemical properties of edible films from chitosan composites obtained by microwave heating, Polymer Bulletin, 61(6), 737(2008)

14 P.Wongpanit, N.Sanchavanakit, P.Pavasant, P.Supaphol, S.Tokura, R.Rujiravanit, Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl

chitosan films for potential use in wound care application, Macromolecular Bioscience, 5(10), 1001(2005)

15 JIANG Tingda, Chitosan, (Beijing, Chemical Industry Press, 2006) p.103

(蒋挺大,  壳聚糖, (北京, 化学工业出版社, 2006) p.103)

16 Q.L.Hu, B.Q.Li, M.Wang, J.C.Shen, Preparation and characterization of biodegradable chitosan/ hydroxyapatite nanocomposite rods via in situ hybridization:a potential material as internal fixation of bone fracture, Biomaterials, 25, 779(2004)

17 Z.K.Wang, Q.L.Hu, L.Cai, Chitin fiber and chitosan 3D composite rods, International Journal of Polymer Science, 2010, 369759(2010)

18 WANG Zhengke, HU Qiaoling, LV Jia, WANG Youxiang, SHEN Jiacong, Chitosan rod reinforced with absorbent cotton fibers, Journal of Zhejiang University(Engineering Science), 43(7), 1312(2009)

(王征科, 胡巧玲, 吕佳, 王幽香, 沈家骢, 脱脂棉纤维增强壳聚糖棒材, 浙江大学学报: 工学版, 43(7), 1312(2009))

19 HU Wenjie, HE Xueyin, DENG Yujie, XIE Feng, LIU Xiangyan, CHEN Mingjun. A clinical study on Dikfix absorbable internal fixation screws, Chinese Journal of Orthopaedic Trauma, 4(4), 258(2002)

(胡文杰, 何学银, 邓宇杰, 谢峰, 刘相燕, 陈明俊, Dikfix可吸收骨折内固定螺钉的临床观察, 中华创伤骨科杂志, 4(4), 258(2002))

20 G.O.Hofmann, F.D. Wagner, New implant designs for bioresorbable devices in orthopaedic surgery, Clinical Materials, 14(3), 207(1993)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.