Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 1-7    DOI: 10.11901/1005.3093.2021.231
  综述 本期目录 | 过刊浏览 |
天然铠甲高效防护的材料学机理
赵宁1,2, 焦大2, 朱艳坤2, 刘德学1, 刘增乾2(), 张哲峰2()
1.兰州理工大学材料科学与工程学院 兰州 730050
2.中国科学院金属研究所 沈阳 110016
Material Science Mechanism for Efficient Protection of Natural Armor
ZHAO Ning1,2, JIAO Da2, ZHU Yankun2, LIU Dexue1, LIU Zengqian2(), ZHANG Zhefeng2()
1.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
Ning ZHAO, Da JIAO, Yankun ZHU, Dexue LIU, Zengqian LIU, Zhefeng ZHANG. Material Science Mechanism for Efficient Protection of Natural Armor[J]. Chinese Journal of Materials Research, 2022, 36(1): 1-7.

全文: PDF(10849 KB)   HTML
摘要: 

总结了天然铠甲材料的三种共性组织结构特征及其内在强韧化机理,归纳出三种典型的生物力学效应,包括梯度结构取向效应、原位结构再取向效应和多级“缝合”界面效应,并提出了相应的仿生材料结构优化设计原则。生物力学理论的完善和多种仿生结构的综合应用,有利于使用新型仿生材料更好地解决实际工程问题。

关键词 综述材料科学其它学科仿生设计天然生物材料结构取向梯度界面    
Abstract

Three common structural characteristics of natural armor materials and their strengthening and toughening related intrinsic mechanism were summarized, and three typical biomechanical effects, including gradient structure orientation effect, in-situ structure reorientation effect and multistage "suture" interface effect were also summarized, and the corresponding structural optimization design principles of biomimetic materials were proposed. The constant improvement of biomechanics theory and the comprehensive application of various biomimetic structures are beneficial to solve practical engineering problems with new biomimetic materials.

Key wordsreview    other disciplines of the materials science    bioinspired design    natural biological materials    structural orientation    gradient    interface
收稿日期: 2021-04-15     
ZTFLH:  TB39  
基金资助:国家重点研发计划(2020YFA0710404);国家自然科学基金(51871216);中国科学院青年创新促进会项目(2019191);兴辽英才计划(XLYC1907058)
作者简介: 赵宁,女,1995年生,博士生
图1  典型的天然铠甲材料
图2  生物材料的梯度结构取向与相应的强韧化机理
图3  原位结构再取向效应及其强韧化机理
图4  多级“缝合”界面及其强韧化机理
1 Liu Z Q, Zhang Z F, Ritchie R O. On the materials science of nature's arms race [J]. Adv. Mater., 2018, 30(32): e1705220
2 Meyers M A, Lin Y S, Olevsky E A, et al. Battle in the Amazon: Arapaima versus Piranha [J]. Adv. Eng. Mater., 2012, 14(5): B279
3 Sherman V R, Quan H, Yang W, et al. A comparative study of piscine defense: the scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 1
4 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322(5907): 1516
5 Launey M E, Chen P Y, McKittrick J, et al. Mechanistic aspects of the fracture toughness of elk antler bone [J]. Acta Biomater., 2010, 6(4): 1505
6 Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275
7 Meyers M A, McKittrick J, Chen P Y, et al. Structural biological materials: critical mechanics-materials connections [J]. Science, 2013, 339(6121): 773
8 Yang W, Meyers M A, Ritchie R O. Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials [J]. Prog. Mater. Sci., 2019, 103: 425
9 Cao H, Pan H H, Tang R K. Materials enhanced by biomimetic mineralization [J]. Chin. J. Inorg. Chem., 2019, 35(11): 1957
9 曹 含, 潘海华, 唐睿康. 仿生矿化增强材料 [J]. 无机化学学报, 2019, 35(11): 1957
10 Bruet B J, Song J, Boyce M C, et al. Materials design principles of ancient fish armour [J]. Nat. Mater., 2008, 7(9): 748
11 Jiao D, Liu Z Q, Zhang Z F. Nature weapons: materials science of evolutional "arms race" [J]. Chin. J. Nat., 2019, 41(5): 313
11 焦 大, 刘增乾, 张哲峰. 自然界"军备竞赛"中的材料科学 [J]. 自然杂志, 2019, 41(5): 313
12 Hu Q L, Li X D, Shen J C. Progress in structure biomimetic materials [J]. Chin. J. Mater. Res., 2003, 17(4): 337
12 胡巧玲, 李晓东, 沈家骢. 仿生结构材料的研究进展 [J]. 材料研究学报, 2003, 17(4): 337
13 Tan S, Zhang X, Bao C, et al. Preparation and performance of chitosan/sericite composite film with nacre-like structure [J]. Chin. J. Mater. Res., 2016, 30(10): 763
13 谈 肃, 张 献, 包超等. 仿贝壳结构壳聚糖/绢云母复合薄膜的制备和性能 [J]. 材料研究学报, 2016, 30(10): 763
14 Wang J F, Cheng Q F, Tang Z Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre [J]. Chem. Soc. Rev., 2012, 41(3): 1111
15 Song J R, Fan C C, Ma H S, et al. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell [J]. Acta Mech. Sin., 2015, 31(3): 364
16 Kamat S, Su X, Ballarini R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas [J]. Nature, 2000, 405(6790): 1036
17 Shin Y A, Yin S, Li X Y, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nat. Commun., 2016, 7: 10772
18 Gu G X, Takaffoli M, Buehler M J. Hierarchically-enhanced impact resistance of bioinspired composites [J]. Adv. Mater., 2017, 29(28): 1700060
19 Chen L, Ballarini R, Kahn H, et al. Bioinspired micro-composite structure [J]. J. Mater. Res., 2007, 22(1): 124
20 Yang W, Chen I H, Gludovatz B, et al. Natural flexible dermal armor [J]. Adv. Mater., 2013, 25(1): 31
21 Liu Z Q, Jiao D, Weng Z Y, et al. Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation [J]. J. Mech. Behav. Biomed. Mater., 2016, 56: 165
22 Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
23 Achrai B, Wagner H D. The turtle carapace as an optimized multi-scale biological composite armor - a review [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 50
24 Sun C Y, Chen P Y. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms [J]. Acta Biomater., 2013, 9(11): 9049
25 Chen I H, Yang W, Meyers M A. Alligator osteoderms: mechanical behavior and hierarchical structure [J]. Mater. Sci. Eng. C, 2014, 35: 441
26 Yang W, Naleway S E, Porter M M, et al. The armored carapace of the boxfish [J]. Acta Biomater., 2015, 23: 1
27 Liu Z Q, Zhang Z F, Ritchie R O. Structural orientation and anisotropy in biological materials: functional designs and mechanics [J]. Adv. Funct. Mater., 2020, 30(10): 1908121
28 Naleway S E, Porter M M, McKittrick J, et al. Structural design elements in biological materials: application to bioinspiration [J]. Adv. Mater., 2015, 27(37): 5455
29 Yang W, Gludovatz B, Zimmermann E A, et al. Structure and fracture resistance of alligator gar (atractosteus spatula) armored fish scales [J]. Acta Biomater., 2013, 9(4): 5876
30 Liu Z Q, Zhu Y K, Jiao D, et al. Enhanced protective role in materials with gradient structural orientations: lessons from nature [J]. Acta Biomater., 2016, 44: 31
31 Azis S A A, Jauhari I, Ahamad N W. Improving surface properties and wear behaviors of duplex stainless steel via pressure carburizing [J]. Surf. Coat. Technol., 2012, 210: 142
32 Lakhtin Y M, Kogan Y D. Controlled nitriding processes [J]. Met. Sci. Heat Treat., 1978, 20(8): 667
33 Tao N R, Sui M L, Lu J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening [J]. Nanostruct. Mater., 1999, 11(4): 433
34 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1(5): 16019
35 Keckes J, Burgert I, Fruhmann K, et al. Cell-wall recovery after irreversible deformation of wood [J]. Nat. Mater., 2003, 2: 810
36 Guerin H A, Elliott D M. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load [J]. J. Biomech., 2006, 39(8): 1410
37 Saavedra Flores E I, DiazDelaO F A, Ajaj R M, et al. Mathematical modelling of the stochastic mechanical properties of wood and its extensibility at small scales [J]. Appl. Math. Model., 2014, 38(15-16): 3958
38 Weinkamer R, Fratzl P. Mechanical adaptation of biological materials-The examples of bone and wood [J]. Mater. Sci. Eng. C, 2011, 31(6): 1164
39 Sharma A, Thakre S, Kumaraswamy G. Microstructural differences between Viscose and Lyocell revealed by in-situ studies of wet and dry fibers [J]. Cellulose, 2020, 27(3): 1195
40 Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
41 Jaslow C R. Mechanical properties of cranial sutures [J]. J. Biomech., 1990, 23(4): 313
42 Chen I H, Kiang J H, Correa V, et al. Armadillo armor: mechanical testing and micro-structural evaluation [J]. J. Mech. Behav. Biomed. Mater., 2011, 4(5): 713
43 Saunders W B, Work D M. Shell morphology and suture complexity in upper carboniferous ammonoids [J]. Paleobiology, 1996, 22(2): 189
44 Saunders W B, Work D M, Nikolaeva S V. Evolution of complexity in paleozoic ammonoid sutures [J]. Science, 1999, 286(5440): 760
45 Idei M, Sato S, Watanabe T, et al. Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta) [J]. Phycologia, 2013, 52(3): 295
46 Liu Z Q, Zhang Z F, Ritchie R O. Interfacial toughening effect of suture structures [J]. Acta Biomater., 2020, 102: 75
47 Garner S N, Naleway S E, Hosseini M S, et al. The role of collagen in the dermal armor of the boxfish [J]. J. Mater. Res. Technol., 2020, 9(6): 13825
48 Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review [J]. Addit. Manuf., 2019, 27: 461
49 Zhu W, Li J X, Leong Y J, et al. 3D-printed artificial microfish [J]. Adv. Mater., 2015, 27(30): 4411
50 du Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing [J]. Addit. Manuf., 2019, 27: 408
51 Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges [J]. Compos. B Eng., 2018, 143: 172
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 季洪梅, 王絮, 李小武. 贝壳珍珠质及交叉叠片结构体外类骨磷灰石生长的对比研究[J]. 材料研究学报, 2023, 37(4): 241-247.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
[10] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[11] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[12] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[13] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[14] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[15] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.