Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 368-372    
  研究论文 本期目录 | 过刊浏览 |
Ti3AlC2在静高压下的热稳定性
李子扬,  寇自力, 安佩 , 秦家千
四川大学原子与分子物理研究所 成都 610065
Thermal Stability of Ti3AlC2 at Static High Pressure
LI Ziyang, KOU Zili,  AN Pei,  QIN Jiaqian
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
引用本文:

李子扬 寇自力 安佩 秦家千. Ti3AlC2在静高压下的热稳定性[J]. 材料研究学报, 2010, 24(4): 368-372.
, , , . Thermal Stability of Ti3AlC2 at Static High Pressure[J]. Chin J Mater Res, 2010, 24(4): 368-372.

全文: PDF(771 KB)  
摘要: 

研究了在静高压条件下Ti3AlC2的热稳定性, 结果表明: 在不同压力(2、3、4和5 GPa)下, Ti3AlC2直接分解的最低温度在700--800℃, 反应的最终产物主要为Al3Ti和TiC。具体的分解反应过程取决于压力的大小。

关键词 无机非金属材料  热稳定性  静高压 Ti3AlC2 反应过程    
Abstract

Thermal stability of Ti3AlC2 at static high pressure was dealt with in this paper. It was found that the lowest reaction temperatures of Ti3AlC2 were all between 700 and 800oC at pressures of 2, 3, 4 and 5 GPa, respectively, and the final products mostly were Al3Ti and TiC. The decomposition reaction processes depended on the pressure.

Key wordsinorganic non-metallic materials     thermal stability     static high pressure    Ti3AlC2     reaction process
收稿日期: 2010-04-07     
ZTFLH: 

O521

 
基金资助:

国家自然科学基金50572067和10772126资助项目。

1 M.A.Pietzka, J.C.Schuster, Summary of constitutional data on the aluminum-carbon-titanium system, Journal of Phase Equilibria, 15(4), 392(1994) 2 M.W.Barsoum, The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates, Progress Solid State Chemistry, 28(1-4), 201(2000) 3 Y.C.Zhou, X.H.Wang, Z.M.Sun, S.Q.Chen, Electronic and structural properties of layered ternary carbide Ti3AlC2, Journal of Materials Chemistry, 11(9), 2335(2001) 4 X.H.Wang, Y.C.Zhou, Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process, Acta Materialia, 50(12), 3141(2002) 5 X.H.Wang, Y.C.Zhou, Oxidation behavior of Ti3AlC2 at 1000–1400?C in air, Corrosion Science, 45(5), 891(2003) 6 CHEN Xiujuan, LI Jianwei, Progress in research of synthesize Ti3AlC2 ceramics, Powder Metallurgy Industry, 18(4), 40(2008) (陈秀娟, 李建伟, Ti3AlC2陶瓷材料研究进展, 粉末冶金工业,  18(4), 40(2008)) 7 X.H.Wang, Y.C.Zhou, Stability and selective oxidation of aluminum in nano-laminate Ti3AlC2 upon heating in argon, Chemistry of Materials, 15, 3716(2003) 8 Z.M.Sun, Y.C.Zhou, M.S.Li, Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300oC in air, Corrosion Science, 43(6), 1095(2001) 9 Z.M.Sun, Y.C.Zhou, M.Li, Cyclic-Oxidation behavior of Ti3SiC2-based material at 1100 , Oxidation of Metals, 57, 379(2002) 10 J.Zhang, J.Y.Wang, Y.C.Zhou, Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu- Ti3AlC2 composites, Acta Materialia, 55, 4381(2007) 11 J.X.Chen, Y.C.Zhou, H.B.Zhang, D.T.Wan, M.Y.Liu, Thermal stability of Ti3AlC2/Al2O3 composites in high vacuum, Materials Chemistry and Physics, 104, 109(2007) 12 P.W.Mirwald, I.C.Getting, G.C.Kennedy, Low friction cell for pistoncylinder high-pressure apparatus, Journal of Geophysical Research Solid Earth, 80, 1519(1975) 13 J.Y.Wang, Y.C.Zhou, T.Liao, J.Zhang, Z.J.Lin, Phase stability of Ti2AlC suffering Al vacancy by first-principles investigations, Scripta Materialia, 58(3), 227(2008) 14 J.Emmerlich, D.Music, P.Ekund, O.Wilhelmssonc, U.Janssonc, J.M.Schneiderb, H.H¨ogberga, L.Hultmana, Thermal stability of Ti3SiC2 thin films, Acta Materialia, 55, 1479(2007) 15 M.W.Barsoum, T.El-Raghy, L.Farber, M.Amer, R.Christini, A.Adams, The topotaxial transformation of Ti3SiC2 to form a partially ordered cubic TiC0.67 phase by the diffusion of Si into molten cryolite, Journal of the Electrochemical Society, 146, 3919(1999) 16 X.H.Wang, Y.C.Zhou, High-temperature oxidation behavior of Ti2AlC in air, Oxidation of Metals, 59, 303(2003) 17 M.Beckers, N.R.Schell, M.S.Martins, A.M¨ucklich, W.M¨oller, Phase stability of epitaxially grown Ti2AlN thin films. Applied Physics Letters, 89, 074101(2006)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.