Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 266-272    
  研究论文 本期目录 | 过刊浏览 |
溶胶--凝胶法制备超疏水PMHS--SiO2涂膜
胡小娟, 刘岚, 罗远芳, 贾德民, 程梁,  胡盛哲
华南理工大学材料科学与工程学院 广州 510640
Preparation of Superhydrophobic PMHS–SiO2 Coatings by Sol–Gel Method
HU Xiaojuan, LIU Lan, LUO Yuanfang, JIA Demin, CHENG Liang, HU Shengzhe
College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

胡小娟 刘岚 罗远芳 贾德民 程梁 胡盛哲. 溶胶--凝胶法制备超疏水PMHS--SiO2涂膜[J]. 材料研究学报, 2010, 24(3): 266-272.
, , , . Preparation of Superhydrophobic PMHS–SiO2 Coatings by Sol–Gel Method[J]. Chin J Mater Res, 2010, 24(3): 266-272.

全文: PDF(1240 KB)  
摘要: 

通过溶胶--凝胶法制备了二氧化硅(SiO2)溶胶, 并以含氢硅油(PMHS)为改性剂, 对SiO2粒子表面进行疏水化处理, 然后在玻璃基片上提拉成膜和加热凝胶化, 制备出超疏水PMHS--SiO2涂膜。通过接触角测定、红外光谱、透射电镜、扫描电镜、湿热老化等手段对涂膜的制备条件、结构与性能进行了研究。结果表明, 在PMHS/SiO2质量比为1 : 1、改性时间为4 h、涂膜热处理温度170℃、热处理时间3 h的条件下, 可制得具有优良超疏水性的PMHS--SiO2涂膜,其水接触角可达163o, 滚动角可低至3o--5o,
且具有优异的耐湿热老化性能。对改性前后的SiO2溶胶和PMHS--SiO2涂膜的结构形态研究发现, PMHS与SiO2表面产生了化学结合, 形成了PMHS--SiO2杂化交联材料; 涂膜表面被疏水性PMHS包覆, 同时较均匀地分布着许多粒径为50--400 nm的微米--纳米双重粗糙度的微凸体, 这是产生优异的超疏水性能的主要原因。

关键词 无机非金属材料  功能材料 超疏水涂膜 溶胶--凝胶法 二氧化硅 含氢硅油 接触角    
Abstract

The PMHS–SiO2 superhydrophobic coatings were prepared by sol–gel process. The preparation conditions, structure and properties of the coatings were investigated by contact angle measurement, Fourier transfer infrared spectroscopy (FTIR), Transmission electron microscope (TEM), Scanning electron microscope (SEM) and hygrothermal ageing. The results show that the contact angle of the coating reaches 163? and rolling angle is 3?–5? when the PMHS/SiO2 mass ratio is 1:1, modified time is 4 h, and heat–treated conditions are 170 ℃ for 3 h. The coatings also have good hygrothermal ageing resistance. The crosslinked PMHS–SiO2 hybrid materials was obtained due to the chemical combination between PMHS and SiO2 surfaces. The excellent superhydrophobic property of the coatings is due to dual effects of forming an appropriate surface roughness with micrometer–nanometer composite particles and the low surface energy of PMHS.

Key wordsinorganic non&ndash    metallic materials, functional material, superhydrophobic coatings, sol&ndash    gel method, SiO2, polymethylhydrogensiloxane, contact angle
收稿日期: 2010-01-14     
ZTFLH: 

TB34

 
基金资助:

国家自然科学基金项目(50608034, 50873036)、华南理工大学百步梯项目和SRP(学生研究计划)资助。

1 L.Jiang, R.Wang, B.Yang, T.J.Li, D.A.Tryk, A.Fujishima, K.Hashimito, D.B.Zhu, Binary cooperative complementary nanoscale interfacial materials, Pure Appl. Chem., 72, 73(2000) 2 W.Barthlott, C.Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1(1997) 3 A.Nakajima, A.Fujishima, K.Hashimoto, T.Watanabe, Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate, Adv. Mater., 11, 1365(1999) 4 M.T.Khorasani, H.Mirzadeh, P.G.Sammes, Laser induced surface modification of polydimethylsiloxane as a super– hydrophobic material, Radiat. Phys. Chem., 47, 881(1996) 5 A.Nakajima, K.Abe, K.Hashimoto, T.Watanabe, Preparation of hard super–hydrophobic films with visible light transmission, Thin Solid Films, 376, 140(2000) 6 Y.Y.Wu, H.Sugimura, Y.Inoue, O.Takai, Thin films with nanotextures for transparent and ultra water–repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD, Chem. Vap. Deposition, 8, 47(2002) 7 I.A.Larmour, S.E.J.Bell, G.C.Saunders, Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition, Angew. Chem. Int. Ed., 46, 1710(2007) 8 N.J.Shirtcliffe, G.Mchale, M.I.Newton, G.Chabrol, C.C.Perry, Dual–scale roughness produces unusually water–repellent surfaces, Adv. Mater., 16, 1929(2004) 9 L.Jiang, Y.Zhao, J.Zhai, A lotus–leaf–like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics, Angew. Chem. Int. Ed., 43, 4338(2004) 10 Q.D.Xie, G.Q.Fan, N.Zhao, X.L.Guo, J.Xu, J.Y.Dong, L.Y.Zhang, Y.J.Zhang, C.C.Han, Facile creation of a bionic super–hydrophobic block copolymer surface, Adv. Mater., 16, 1830(2004) 11 L.Feng, S.H.Li, H.J.Li, J.Zhai, Y.L.Song, L.Jiang, D.B.Zhu, Super–hydrophobic surface of aligned polyacrylonitrile nanofibers, Angew. Chem. Int. Ed., 41, 1221(2002) 12 W.Stober, A.Fink, E.Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62(1968) 13 W.Ming, D.Wu, R.V.Benthem, G.D.With, Superhydrophobic films from raspberry–like particles, Nano Lett., 5, 2298(2005) 14 A.B.D.Cassie, S.Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546(1944)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.