Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 208-212    
  研究论文 本期目录 | 过刊浏览 |
用低温水热法制备可控形貌金红石型纳米TiO 2
周利民1;2; 梁喜珍1; 蔡俊青2
1.东华理工大学核资源与环境教育部重点实验室 抚州 344000
2.天津大学化工学院 天津 300072  
Preparation of the Shape–Controlled Rutile Nano–TiO2 by Low Temperature Hydrothermal Method
ZHOU Limin 1;2 ; LIANG Xizhen1 ; CAI Junqing 2
1.Key Laboratory of Nuclear Resources and Environment of Ministry of Education; East China Institute of Technology; Fuzhou 344000
2.School of Chemistry and Chemical Engineering; Tianjin University; Tianjin 300072
引用本文:

周利民 梁喜珍 蔡俊青. 用低温水热法制备可控形貌金红石型纳米TiO 2[J]. 材料研究学报, 2010, 24(2): 208-212.
. Preparation of the Shape–Controlled Rutile Nano–TiO2 by Low Temperature Hydrothermal Method[J]. Chin J Mater Res, 2010, 24(2): 208-212.

全文: PDF(761 KB)  
摘要: 

以四氯化钛为反应前驱体, 用低温水热法制备纯金红石相纳米TiO2, 研究了反应温度和反应时间对TiO2微结构和形貌的影响。X--射线衍射分析表明, 所有产物均为纯金红石型纳米TiO2, 晶粒尺寸范围4.0----11.5 nm。 红外光谱和热重分析表明, 产物TiO2存在表面羟基和表面水。TEM分析表明, 反应温度为60--80℃的TiO2样品呈梭形, 且彼此聚集呈束状, 但反应温度高于120℃时呈粒状, 且粒径增加。随着反应时间(4--40 h)的延长, TiO2呈棒状、梭状及颗粒状。

关键词 无机非金属材料  金红石型TiO2  低温水热法  形貌 反应温度 反应时间    
Abstract

The pure rutile phase nano–TiO2 was prepared by low temperature hydrothermal method using titanium tetrachloride as reaction precursors. The effects of reaction temperature and reaction time on the microstructure and the morphology of the TiO2 samples were investigated. The X–ray diffraction patterns showed that all of the TiO2 samples were pure rutile phase. The average crystallite size was found  to vary in the range of 4.0–11.5 nm. Fourier transform infrared spectra and thermogravimetry analysis showed that the nano–TiO2 samples have surface hydroxyl group and surface adsorbed water. Transmission electron microscopy analysis showed that the morphology and average size of the synthesized rutile nano– TiO2 were strongly effected by both hydrothermal reaction temperature and time. The rutile nano–TiO2 shows a similar shuttle–like morphology and were bunched together at the reaction temperature of 60–80 ,  however, at the reaction temperature above 120 they tended to resolve into spherical particles andattained larger sizes. The morphology of the rutile nano–TiO2 samples changed form rod–like to shuttle– like and spherical–like with increase of reaction time from 4 h to 40 h.

Key wordsinorganic non–metallic materials     rutile TiO2    low temperature hydrothermal method    shape    reaction temperature     reaction time
收稿日期: 2009-10-12     
基金资助:

江西省教育厅科技项目GJJ10494, 江西省科技支撑项目2009BSBb08600和东华理工大学核资源与环境开放基金090910资助项目.

1 HE Jinming, PENG Xuhong, LU Huihong, ZHAO Jihua, SHEN Weiguo, Synthesis of rutile nanoparticles by microemulsion method at low temperature, Chinese Journal of Inorganic Chemistry, 24(2), 191(2008) (贺进明, 彭旭红, 吕辉鸿, 赵继华, 沈伟国微乳液法低温制备纳米金红石型二氧化钛的研究, 无机化学学报,  24(2), 191(2008)) 2 S.T.Aruna, S.Tirosh, A.Zaban, Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers, J. Mater. Chem., 10(10), 2388(2000) 3 Q.Zhang, L.Gao, J.Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B Environ., 26(3), 207(2000) 4 F.Pedraza, A.Vazquez, Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3, J. Phys. Chem. Solids, 60(4), 445(1999) 5 K.N.Kumar, K.Keizer, A.Burggraaf, Stabilization of the porous texture of nanostructured titanic by avoiding a phase transformation, J. Mater. Sci. Lett., 13(1), 59(1994) 6 Z.L.Tang, J.Y.Zhang, Z.Cheng, Z.T.Zhang, Synthesis of nanosized rutile TiO2 powder at low temperature, Mater. Chem. Phys., 77(2), 314(2002) 7 S.Yin, R.Li, Q.He, T.Sato, Low temperature synthesis of nanosize rutile titania crystal in liquid media, Mater. Chem. Phys., 75(1), 76(2002) 8 S.Yin, K.Ihara, Y.Alta, M.Komatsu, T.Sato, Visible–light induced photocatalytic activity of TiO2−xAy(A=N,S) prepared by precipitation route, J. Photochem. Photobio A, 179(1), 105(2006) 9 LONG Zhen, HUAN Ximing, ZHONG jiacheng, GONG ChuQing, ZAN Ling, LUO Qirong, WANG Jianbo, Preparation and characterization of nanosize rutile titania at low temperature, Journal of Functional Materials, 35(3), 311(2004) (龙 震, 黄喜明, 钟家柽, 龚楚清, 昝 菱, 罗其荣, 王建波, 纳米金红石型二氧化钛的低温制备及表征, 功能材料,  35(3), 311(2004)) 10 ZHOU Zhongcheng, RUAN Jianming, ZOU Jianpeng, LI Songlin, FU Naike, Preparation of nanosized rutile TiO2 powders by direct hydrolysis of TiCl4, Chinese Journal of Rare Metals, 30(5), 653(2006) (周忠诚, 阮建明, 邹俭鹏, 李松林, 符乃科, 四氯化钛低温水解直接制备金红石型纳米二氧化钛, 稀有金属, 30(5), 653(2006)) 11 X.Q.Chen, G.B.Gu, H.B.Liu, Z.N.Cao, Synthesis of nanocrystalline TiO2 particles by hydrolysis of titanyl organic compounds at low temperature, J. Am. Ceram. Soc., 87(6), 1035(2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 邹田春, 巨乐章, 李龙辉, 符记. 铺层方式对CFRP-Al单搭接接头胶接性能的影响[J]. 材料研究学报, 2022, 36(9): 715-720.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.