Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 201-207    
  研究论文 本期目录 | 过刊浏览 |
炭纤维增强TaC基复合材料的力学性能和氧化行为
陈招科; 熊翔; 李国栋
中南大学~粉末冶金国家重点实验室 长沙 410083
Oxidation Behavior of C Fiber Reinforced TaC Matrix Composites
CHEN Zhaoke; XIONG Xiang; LI Guodong
State Key Laboratory of Powder Metallurgy; Central South University; Changsha 41008
引用本文:

陈招科 熊翔 李国栋. 炭纤维增强TaC基复合材料的力学性能和氧化行为[J]. 材料研究学报, 2010, 24(2): 201-207.
, , . Oxidation Behavior of C Fiber Reinforced TaC Matrix Composites[J]. Chin J Mater Res, 2010, 24(2): 201-207.

全文: PDF(1083 KB)  
摘要: 

用化学气相渗透(CVI)方法在准三维针刺炭毡中沉积连续分布的TaC基体, 制备出炭纤维增强TaC陶瓷基体Cf/TaC复合材料, 研究了材料的力学性能和在1200--1600℃的氧化行为。结果表明, 用CVI法可制备密度为5.12 g/cm3的Cf/TaC复合材料, TaC陶瓷基体由相互平行的细纤维状晶体组成; 与C/C材料相比, 该复合材料的抗弯强度略低, 但表现出较好的延展性断裂行为; 在高温氧化过程中, Cf/TaC复合材料主要受气体在氧化层连通孔隙网络结构中的扩散和TaC/Ta2O5界面处的反应所控制。

关键词 复合材料  微观结构  氧化行为 化学气相渗透    
Abstract

C fiber reinforced TaC matrix composites were prepared by isothermal chemical vapor infiltration method. The microstructure, mechanical properties and oxidation behaviors at 1200–1600oC were tested by scanning electron microscopy, INSTRON universal machine and an Al2O3 corundum tube (heated by MoSi2) in natural convection air. The results shown that Cf/TaC composites with density of 5.12 g/cm3 can be prepared by CVI; in which TaC ceramic matrix was composed of needle–like crystal structure. The composites show a good ductibility, but a low flextural strength when compared with C/C composites. The 1200–1600 oC oxidation process of Cf/TaC was mainly controlled by the diffusion of oxidation gases in the connected pore–net structure and the reaction at the TaC/Ta2O5 interface.

Key wordscomposites    microstructure    oxidation behavior    chemical vapor infiltration
收稿日期: 2009-10-12     
基金资助:

国家自然科学基金50872154,国家自然科学基金委员会创新研究群体科学基金50721003和博士后基金20070420822资助项目。

1 SU Junming, Research and development of C/C composites for nozzles, Carbon Science and Technology, 1(1), 2(2001) (苏君明, C/C喉衬材料的研究与发展, 炭素科技, 1(1), 2(2001)) 2 ZUO Jinlu, ZHANG Hongbo, XIONG Xiang, HUANG Qizhong, XIAO Peng, Evolve of a research of C/C composites used for nozzle throat, carbon, (02), 7(2003) (左劲旅, 张红波, 熊 翔, 黄启忠, 肖 鹏, 喉衬用炭/炭复合材料研究进展, 炭素, (02), 7 (2003)) 3 Y.J.Lee, H.J.Joo, Investigation on ablation behavior of CFRC composites prepared at different pressure, Composites part A: applied science and manufacturing, 35(11),1285 (2004) 4 HUANG Hai–ming, DU Shan–yi, WU Lin–zhi, WANG Jian xin, Analysis of the ablation of C/C composites, Acta Materiae Compositae Sinica, 18(3), 76(2001) (黄海明, 杜善义, 吴林志, 王建新, C/C复合材料烧蚀性能分析, 复合材料学报,  18(3), 76(2001)) 5 C.H.Weber, K.T.Kim, F.E.Heredia, A.G.Evans, High temperature deformation and rupture in SiC–C composites, Materials Science and Engineering A, 196(1–2), 25(1995) 6 R.E.Bouazzaoui, S.Baste, G.Carnus, Development of damage in a 2D woven C/SiC composite under mechanical loading: II. Ultrasonic characterization, Composites Science and Technology, 56(12), 1373(1996) 7 Stewart K Griffiths, Robert H Nilson, Optimum Conditions for Composites Fiber Coating by Chemical Vapor Infiltration, J. Electrochem. Soc., 145(4), 1263(1998) 8 B.Yan, Z.F.Chen, J.X.Zhu, J.Z.Zhang, Y.Jiang, Effects of ablation at different regions in three–dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800 oC, Journal of materials processing technology, 209(7), 3438(2009) 9 G.B.Zhang, Q.G.Guo, K.J.Wang, H.Zhang, Y.Song, J.L.Shi, L.Liu, Finite element design of SiC/C functionally graded materials for ablation resistance application, Materials Science and Engineering A, 488(1–2), 45(2008) 10 MA Fukang, QIU Xiangdong, JIA Housheng, LIU Guicai, Niobium and Tantalum, the second editor, (Changsha, Central South University Press, 1997) p.26 (马福康, 邱向东, 贾厚生, 刘贵才,  铌与钽,  第二版, (长沙, 中南工业大学出版社, 1997) p.26) 11 LI Guodong, XIONG Xiang, HUANG Baiyun, Effect of Temperature on Composition, Surface Morphology and Microstructure of CVD–TaC Coating, The Chinese Journal of Nonferrous Metals, 15(4), 565(2005) (李国栋, 熊 翔, 黄伯云, 温度对CVD--TaC涂层组成、形貌与结构的影响, 中国有色金属学报,  15(4), 565(2005)) 12 A.Sayir, Carbon fiber reinforced hafnium carbide composite, Journal of Materials Science, 39(19), 5995(2004) 13 J.O.Gibson, M.G.Gibson, Production of carbon fiber–tantalum carbide composites, U.S.patent, 4196230(1980) 14 C.Kim, D.S.Grummon, G.Gottstein, Processing and interface characteristics of graphite fiber reinforced tantalum carbide matrix composites, Scripta Metallurgica et Materialia, 25(10), 2351(1991) 15 K.G.Stewart, H.N.Robert, Optimum Conditions for Composites Fiber Coating by Chemical Vapor Infiltration, J. Electrochem Soc., 145(4), 1263(1998) 16 R.Velimir, D.Ulrich, D.Gao, C.R.Stoldt, C.Carraro, R.Maboudian, Formation of 111 fiber texture in β–SiC films deposited on Si(100) substrates, Diamond and Related Materials, 16(1), 74(2007) 17 LIU Rongjun, ZHANG Changrui, ZHOU Xingui, CAO Yinbin, Growth Characteristics of Chemical Vapor Deposited SiC Coatings, Journal of Inorganic Materials, 20(2), 425(2005) (刘荣军, 张长瑞, 周新贵, 曹英斌, 化学气相沉积SiC涂层生长过程分析, 无机材料学报, 20(2), 425(2005)) 18 TANG Weizhong, The preparation theory, technology and application of thin film materials, the second edition, (Beijing Metallurgical industry Press, 2003) p.96 (唐伟忠,   薄膜材料制备原理、技术及应用,  第二版, (北京, 冶金工业出版社, 2003) p.96) 19 YE Dalun, HU Jianhua, Practical Thermodynamic Data Handbook of Inorganic Matter, the second editor,(Beijing, Metallurgical Industry Press, 2002) p.526 (叶大伦, 胡建华,  实用无机热力学数据手册,  第二版, (北京, 冶金工业出版社, 2002) p.526)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.