Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 604-609    
  研究论文 本期目录 | 过刊浏览 |
在多壁碳纳米管表面高压生长纳米聚晶金刚石纤维
邓福铭1; 卢学军1;2; 刘瑞平1; 徐国军2; 陈启武1; 李文铸1;3
1.中国矿业大学(北京)超硬刀具材料研究所 北京 100083
2.北京市电加工研究所 北京 100191
3.浙江大学物理系 杭州 310027
Characterization of diamond–MWCNTs composite fiber synthesized under high pressure and high temperature
DENG Fuming 1;  LU Xuejun 1;2;    LIU Ruiping1;    XU Guojun  2;  CHEN Qiwu 1;   LI Wenzhu1;3
1.Institute of Superhard Cutting Tool Materials; China University of Mining and Technology; Beijing Campus; Beijing 100083
2.Beijing Institute of Electro–machining; Beijing 100191
3.Department of Physics; Zhejiang University; Hangzhou 310027
引用本文:

邓福铭 卢学军 刘瑞平 徐国军 陈启武 李文铸. 在多壁碳纳米管表面高压生长纳米聚晶金刚石纤维[J]. 材料研究学报, 2009, 23(6): 604-609.
, , , , , . Characterization of diamond–MWCNTs composite fiber synthesized under high pressure and high temperature[J]. Chin J Mater Res, 2009, 23(6): 604-609.

全文: PDF(1170 KB)  
摘要: 

在压力5.8 GPa、温度1500oC、烧结时间1 min条件下, 以3%(质量分数)的碳纳米管作为添加剂, 在金刚石--钴--碳纳米管烧结体系中发现了碳纳米管表面生长的由纳米颗粒形成的纤维. 用酸碱将样品处理前后的SEM观察发现, 该复合纤维的外层为纳米聚晶金刚石. EDS、XPS、XRD和拉曼光谱分析进一步证实, 复合纤维的内层为多壁碳纳米管、外层为纳米聚晶金刚石. 在此基础上提出, 在高温高压下未转变的CNTs可能对外层再生长纳米金刚石起模板作用.

关键词 无机非金属材料  多壁碳纳米管(MWCNTs)  纳米聚晶金刚石纤维 高压烧结    
Abstract

A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500 for 1 min by using 3% MWCNTs as additive. The experiment results revealed that the outer layer of the fiber is composed of nano–polycrystalline diamond, while the inner fiber is composed of MWCNTs. It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano–polycrystalline diamond fiber under high pressure and high temperature.

Key wordsinorganic non-metallic materials    mullti--walled carbon nanotubes (MWCNTs)    nano--polycrystalline diamond fiber     high pressure sintering
收稿日期: 2009-04-02     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金50342017和北京市自然科学基金2042019资助项目.

1 S.Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56(1991) 2 J.Tersoff, R.S.Roff, Structural Properties of a Carbon–Nanotube Crystal, Physical Review Letters, 73(5), 676(1994) 3 D.H.Robertson, D.W.Brenner, J.W.Mintmire, Energetics of nanoscale graphitic tubules, Physical Review B, 45(21), 12592(1992) 4 B.I.Yakobson, C.J.Brabec, J.Bernhole, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, 76(14), 2511(1996) 5 M.M.Treacy, T.W.Ebbesen, J.M.Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678(1996) 6 E.W.Wong, P.E.Sheehan, C.M.Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 277, 1971(1997) 7 D.S.Tang, L.C.Chen, L.J.Wang, L.F.Sun, Z.Q.Liu, G.Wang, W.Y.Zhou, S.S.Xie, Behavior of carbon nanotubes under high pressure and high temperature, Journal of Materials Research, 15(2), 560(2000) 8 Y.Q.Zhu, T.Sekine, T.Kobayashi, E.Takazawa, M.Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves, Chemical Physics Letters, 287(5–6), 689(1998) 9 CAO Limin, ZHANG Ming, ZHANG Xiangyi, GAO Chunxiao, ZHOU Zhenhua, ZHANG Jun, DAI Daoyang, SUN Liling, WANG Wenkui, Phase transition and diamond synthesis of carbon nanatubes under high pressure and high temperature, Chinese Journal of High Pressure Physics, 14(1), 33(2000) (曹立民, 张明, 张湘义, 高春晓, 周镇华, 张君, 戴道阳, 孙力玲, 王文魁, 高温高压下碳纳米管的相转变及金刚石的合成, 高压物理学报, 14(1), 33(2000)) 10 CHEN Liangchen, WANG Lijun, TANG Dongsheng, XIE Sishen, JING Changqing, X–ray diffraction analysis of carbon nanotubes under high pressure, Chinese Journal of High Pressure Physics, 15(1), 1(2001) (陈良辰, 王莉君, 唐东升, 解思深, 靳常青, 高压下碳纳米管的X射线衍射研究, 高压物理学报,  15(1), 1(2001)) 11 B.Wei, J.Zhang, J.Liang, D.Wu, The mechanism of phase transformation from carbon nanotube to diamond, Carbon, 36(7–8), 997(1998) 12 R.A.Skeland, The Science and Engineering of Materials, 3rd edition (Boston, PWS publishing, 1994) p.238 13 S.B.Sinnot, O.A.Shenderova, C.T.White, D.W.Brenner, Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations, Carbon, 36(1–2), 1(1998) 14 H.J.Dai, E.W.Wong, Y.Z.Liu, S.S.Fan, C.M.Lieber, Synthesis and characterization of carbide nanorods, Nature, 375, 769(1995) 15 W.Q.Han, S.S.Fan, Q.Q.Li,W.J.Liang. B.L.Gu, D.P.Yu, Continuous synthesis and charac–terization of silicon carbide nanorods, Chemical Physics Letters, 265(3–5), 374(1997) 16 W.Q.Han, S.S.Fan, Q.Q.Li, Y.D.Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction, Science, 277, 1287(1997) 17 XIE Youzan, The Theory and Synthesis Technology of Diamond (Beijing, The Press of technology of Hunan, 1993) p.80 (谢有赞,   金刚石理论与合成技术,  (长沙, 湖南科技出版社, 1993) p.80) 18 Z.Y.Hao, Nucleation and growth of diamond, Journal of Crystal Growth, 140(3–4), 441(1994) 19 S.Suzuki, C.Bower, T.Kiyokura, Photoemission spectroscopy of single–walled carbon nanotube bundles, Journal of Electron Spectroscopy and Related Phenomena, 114–116, 225(2001) 20 H.Hiura, T.W.Ebbesen, K.Tanigaki, H.Takahashi, Raman studies of carbon nanotubes, Chemical Physics Letters, 202(6), 509(1993) 21 M.Nakamizo, R.Kammereck, P.L.Walker, Laser raman studies on carbons, Carbon, 12(3), 259(1974) 22 Y.B.Li, Y.Q.Zhu, Z.D.Gao, J.Liang, B.Q.Wei, D.H.Wu, Nucleation of diamond film growth by Buckytubes, Journal of Materials Science Letters, 14(18), 1281(1995) 23 S.Iijiam, T.Ichihashi, Y.Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 356, 776(1992) 24 DENG Fuming, CHEN Qiwu, HUANG Peiyun, The Interfacial Structure of Polycrystallines of D–D (Bonding) Diamond and its Growth Pattern, Mining and Metallurgical Engineering (in Chinese), 19(1), 63(1999) (邓福铭, 陈启武, 黄培云, D--D结合型金刚石聚晶晶界结构及其生长模式, 矿冶工程,  19(1), 63(1999))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.