Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 518-523    
  研究论文 本期目录 | 过刊浏览 |
以冰为模板制备超轻多孔氧化锆块材
曹阳;  贺军辉
中国科学院理化技术研究所功能纳米材料实验室 北京 100190
Preparation and formation mechanism of porous ultralightweight zirconia by ice templating
CAO Yang; HE Junhui
Functional Nanomaterials Laboratory; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190)
引用本文:

曹阳 贺军辉. 以冰为模板制备超轻多孔氧化锆块材[J]. 材料研究学报, 2009, 23(5): 518-523.
. Preparation and formation mechanism of porous ultralightweight zirconia by ice templating[J]. Chin J Mater Res, 2009, 23(5): 518-523.

全文: PDF(1171 KB)  
摘要: 

以冰为模板, 经真空冷冻干燥过程制备轻质ZrO2多孔材料和水玻璃为粘结剂的超轻多孔ZrO2块材, 研究了其微观结构、形成机理和隔热耐火性能. 结果表明, 冰是一种理想的制作多孔材料的模板, 可同时获得多种尺度的孔结构, 还可获得多孔和层状两种结构复合的微观结构. ZrO2多孔材料的微观结构为奇特的周期性层状结构. 添加水玻璃作为粘结剂, 制备出多孔和层状两种微结构复合的ZrO2多孔块材, 在400℃煅烧6 h后仍良好地保持原有的微观结构, 孔隙率达87%, 表观密度仅为0.50 g ? cm-3,  超轻且机械强度有较大提高, 在1300℃丁烷气火焰灼烧下表现出较好的隔热耐火性能.

关键词 无机非金属材料 氧化锆 冰为模板 多孔 超轻    
Abstract

Porous lightweight ZrO2 and porous ultralightweight ZrO2 monolith were prepared via a freeze-drying process using ice as template. The microstructures, formation mechanisms and performances of thermal insulation and fire-resistant were studied. The results indicated that ice is an ideal template for fabrication of porous materials. The obtained porous ZrO2 with periodical layered microstructures were
lightweight, but with poor strength. After adding sodium silicate as binder, the obtained ZrO2 monolith has porous and layered hybrid microstructures, which were still kept after calcination at 400 oC for 6 h. The calcined ZrO2 monolith has a porosity of 87%, an apparent density of 0.50 g·cm−3 and high strength. The ZrO2 monolith showed good thermal insulating and fire-resistant properties with 1300oC butane gas flame.

收稿日期: 2008-12-24     
ZTFLH: 

O611

 
基金资助:

中国科学院“百人计划”, 重大科学研究计划2006CB933000, 中国科学院院长基金资助项目.

1 DUAN Xidong, The development characterization and application of porous ceramic, Ceramic Studies Journal, 14(3), 12(1999) (段曦东, 多孔陶瓷的制备、性能及应用, 陶瓷研究, 14(3), 12(1999)) 2 ZHU Xiaolong, SU Xuejun, Porous ceramics materials, China Ceramic, 36(4), 36(2000) (朱小龙, 苏雪筠, 多孔陶瓷材料, 中国陶瓷,  36(4), 36(2000)) 3 HAN Yongsheng, LI Jianbao, WEI Qiangmin, Progress in the applications and fabrications of porous ceramics, Materials Review, 16(3), 26(2002) (韩永生, 李建保, 魏强民, 多孔陶瓷材料应用及制备的研究进展, 材料导报,  16(3), 26(2002)) 4 Chengzhang Li, Junhui He, Easy replication of pueraria lobata toward hierarchically ordered porous γ–Al2O3, Langmuir, 22, 2827(2006) 5 YANG Gangbin, CAI Xuheng, QIAO Guanjun, JIN Zhihao, Fabricating technologies and progress of porous ceramics, Journal of Henan University of Science and Technology (Natural Science), 25(2), 99(2004) (杨刚宾, 蔡序珩, 乔冠军, 金志浩, 多孔陶瓷制备技术及其进展, 河南科技大学学报,  25(2), 99(2004)) 6 T.Fukasawa, Z.Y.Deng, M.Ando, Pore structure of porous ceramics synthesized from water-based slurry by freezedry process, Journal of Materials Science, 36, 2523(2001) 7 J.Halloran, Making better ceramic composites with ice, Science, 311, 479(2006) 8 S.W.Sofie, F.Dogan, Freeze casting of aqueous alumina slurries with glycerol, J. Am. Ceram. Soc., 84(7), 1459(2001) 9 LIU Shuxia, HE Junhui, Template-free fabrication of macroporous carbon materials with Pt nanoparticles, New Carbon Materials, 22(3), 253 (2007) (刘淑霞, 贺军辉, 负载铂纳米粒子大孔炭材料的无模板制备, 新型炭材料,  22(3), 253(2007)) 10 H.Nishihara, Shin R.Mukai, D.Yamashita, H.Tamon, Ordered macroporous silica by ice templating, Chem. Mater, 17(3), 683(2005) 11 H.Park, S.H.Yang, Y.S.Jun, W.H.Hong, J.K.Kang, Facile route to synthesize large-mesoporous γ-Alumina by room temperature ionic liquids, Chem. Mater, 19(3), 535(2007) 12 S.Deville, E.Saiz, R.K.Nalla, A.P.Tomsia, Freezing as a path to build complex composites, Science, 311, 515(2006) 13 B.T.Holland, L.Abrams, Stein A. Dual, Templating of macroporous silicates with zeolitic microporous frameworks, J. Am. Chem. Soc., 121(17), 4308(1999) 14 P.D.Yang, T.Deng, D.Y.Zhao, P.Feng, D.Pine, B.F.Chmelka, G.M.Whitesides, G.D.Stucky, Hierarchically ordered oxides, Science, 282, 2244(1998) 15 D.Kuang, T.Brezesinski, B.Smarsly, Hierarchical porous silica materials with a trimodal pore system using surfactant templates, J. Am. Chem. Soc., 126(34), 10534(2004) 16 F.Song, A.K.Soh, Y.L.Bai, Structural and mechanical properties of the organic matrix layers of nacre, Biomaterials, 24, 3623(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.