Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 380-386    
  研究论文 本期目录 | 过刊浏览 |
多孔铝合金连通孔对压缩性能的影响
何思渊1; 龚晓路2; 何德坪3
1.东南大学生物科学与医学工程学院~生物电子学国家重点实验室 南京 210096
2.法国特鲁瓦工业大学机械系 特鲁瓦 法国 10000
3.东南大学材料科学与工程学院~江苏省先进金属材料高技术研究重点实验室 南京 210096
Effect of “through-hole” on porous aluminum alloy compressive mechanical properties
HE Siyuan1;  GONG Xiaolu2;  HE Deping3
1.State Key Laboratory of Bioelectronics; School of Biological Science & Medical Engineering; Southeast University; Nanjing 210096
2.Department of mechanics; University of technology of Troyes; France; Troyes 10000 
3.Jiangsu Key Laboratory of Advanced Metallic Materials;School of Material Science and Engineering; Southeast University; Nanjing 210096
引用本文:

何思渊 龚晓路 何德坪. 多孔铝合金连通孔对压缩性能的影响[J]. 材料研究学报, 2009, 23(4): 380-386.
, , . Effect of “through-hole” on porous aluminum alloy compressive mechanical properties[J]. Chin J Mater Res, 2009, 23(4): 380-386.

全文: PDF(1123 KB)  
摘要: 

根据多孔铝渗流制备过程中孔结构的形成规律建立了单元模型, 其中改变渗流压力引起的通孔度变化所产生的孔隙率变化规律符合物理模型. 通过对不同孔隙率的孔结构单元模型计算, 结合实验研究了孔隙率变化引起的孔结构变化, 并计算了通孔多孔铝力学性能的影响规律. 结果表明, 模型计算得到的材料弹性模量、塑性变形平台应力与实验结果基本相符, 孔与孔之间通孔度的变化决定了通孔多孔铝的孔隙率变化, 受压缩时在连通孔处的应力集中是其力学性能对孔隙率敏感的直接因素.

关键词 金属材料多孔铝合金通孔度孔结构模型压缩力学性能    
Abstract

In accordance with preparation process of open-cell aluminum foam, a novel simplified model of pore s structure was proposed to exploit the performance of the through-holes, which connect neighboring cells, on the elastic module and compressive collapse stress of porous aluminum alloy. It is shown that the results coincide with experiments in terms of elastic module and plastic collapse stress. Stress concentration neighboring the through-hole between neighboring cells was manifested by unit cell model. On account of significant effect of through-hole’s variation on porosity, the sensitivity of mechanical properties of open-cell aluminum alloy on porosity could be explained by stress concentration on the through-hole between neighboring cells.

Key wordsmetallic materials    porous aluminum alloy    interconnected hole    pore structure model    compressive mechanical properties
收稿日期: 2008-12-18     
ZTFLH: 

TG146

 
基金资助:

国家重点基础研究发展计划2006CB601201资助项目.

1 Siyuan He, Xiaolu Gong, Feng Chen, Sound absorption properties of porous aluminium, Journal of Porous Media, Vol.8(6), 589(2005) 2 T.J.Lu, H.A.Stone, M.F.Ashby, Heat transfer in open-cell metal foams, Acta Materialia., 46(10), 3619(1998) 3 T.J.Lu, A.Hess, M.F.Ashby, Sound absorption in metallic foams, Journal of Applied Physics, 85, 7528(1999) 4 Donghui YANG, Deping HE, Porosity of porous Al alloys, Science in China (series. B), 44(4), 411(2001) 5 KANG Yingan, ZHANG Junyan, TANG Jiacai, Effect of relative density on the compressive property and energy absorption capacity of aluminum foams, Journal of Functional Materials, 02, 247(2006) (康颖安, 张俊彦, 谭加才, 相对密度对泡沫铝力学性能和能量吸收性能的影响, 功能材料, 02, 247(2006)) 6 CAO Xiaoqing, YANG Guitong, Mechanical behaviour and energy absorption capacity of aluminium foam under uniaxial compression, Nonferrous Metals, 58(04), 9(2006) (曹晓卿, 杨桂通, 泡沫铝的单向压缩行为及其吸能性, 有色金属,  58(04), 9(2006)) 7 A.N.Gent, A.G.Thomas, Failure of foamed elastic materials, Journal of Appl Polymer Sci, 2(6), 354(1959) 8 L.J.Gibson, M.F.Ashby, The mechanics of threedimensional cellular materials, proceeding of The Royal Society of London, Series A, Mathematical and Physical Sciences, 382(1782), 43(1982) 9 C.San Marchi, A.Mortensen, Deformation of open-cell aluminum foam, Acta Materialia, 49(19), 3959(2001) 10 M.N.Silva, W.C.Hayes, L.J.Gibson, The effects of nonperiodic microstructure on the elastic properties of twodimensional cellular solids, International journal of Mechanical Sciences, 37(11), 1161(1995) 11 Y.X.Gan, C.Chen, Y.P.Shen, Three-dimensional modeling of the mechanical property of linearly elastic open cell foams, International Journal of Solids and Structures, 42(26), 6628(2005) 12 CHEN Feng, ZHANG Aiwen, HE Deping, Control of the degree of pore-opening for porous metals, Chinese Journal of Materials Research, 13(6), 591(1999) (陈锋, 张爱文, 何德坪, 多孔金属通孔度的控制, 材料研究学报,  13(6), 591(1999))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.