Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 387-394    
  研究论文 本期目录 | 过刊浏览 |
离子聚合物金属复合材料的力电耦合模型
安逸; 熊克; 顾娜
南京航空航天大学航空宇航学院 南京 210016
Electromechanical modeling for ionic polymer metal composite based on thermodynamics and pure bending theories
AN Yi;  XIONG Ke; GU Na
College of Aerospace Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing 210016
引用本文:

安逸 熊克 顾娜. 离子聚合物金属复合材料的力电耦合模型[J]. 材料研究学报, 2009, 23(4): 387-394.
, , . Electromechanical modeling for ionic polymer metal composite based on thermodynamics and pure bending theories[J]. Chin J Mater Res, 2009, 23(4): 387-394.

全文: PDF(1274 KB)  
摘要: 

提出了一种基于不可逆热力学和纯弯曲理论的力电耦合模型, 以描述和预测离子聚合物金属复合材料的力电特性.
力电耦合模型的表达形式可简化为含有两个驱动力(电场E和压力梯度∇p)的线性等式, 主要依据离子传输、电场作用和弹性变形之间的耦合关系预测IPMC的力电特性; 采用纯弯曲理论近似描述了IPMC的受力特征. 这个力电耦合模型可解释IPMC材料的驱动特性和传感特性, 能较好地预测IPMC在直流激励下的响应, 误差在-7%以内.

关键词 复合材料离子聚合物金属复合材料力电耦合建模热力学纯弯曲    
Abstract

As a novel kind of sensor and actuator materials, Ionic Polymer Metal Composite (IPMC) has been used in more and more engineering applications fields. And it is urgent to properly model IPMC considering electromechanical relationship to describe its properties. In this paper, an electromechanical model based on nonreversible thermodynamics and pure bending theories was proposed to describe and predict the electrical/mechanical performance of IPMC. The compact description was exhibited by the linear regime with two driving forces (electric field E and pressure gradient ∇p). The model was developed to account for the coupling of ion transport, electric field and elastic deformation to predict the response of the IPMC. The pure bending theory was used to approximately describe the stress characteristic of IPMC. The electromechanical model can explain the actuation and sensing effect of IPMC. The experiment results showed that the model can predict the IPMC responses under DC excitation with the error are within.

Key wordscomposites    IPMC    electromechanical    modeling    thermodynamic    pure bending
收稿日期: 2008-12-23     
ZTFLH: 

TB331

 
基金资助:

国家自然科学基金90605003资助项目.

1 P.G.de Gennes, Ko Okumura, M.Shahinpoor, K.J.Kim, Mechanoelectric effect in ionic gels, Europhysics Letters, 50, 4, 513(2000)
2 M.Shahinpoor, K.J.Kim, Ionic polymer-metal composites: ~. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles, Smart Materials and Structure, 13, 1362(2004)
3 P.J.Costa, J.A.Dente, Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer-metal composites (IPMC) electromechanics, Smart Materials and Structures, 15, 378(2006)
4 Jun Chen, Guowei Ma, Modeling deformation behavior of polyelectrolyte gels under chemo-electro-mechanical coupling effects, International Journal for Numerical method in Engineering, 68, 1052(2006)
5 Sangki Lee, Hoon Cheol Park, Kwang J. Kim, Equivalent modeling for ionic polymer- metal composite actuators based on beam theories, Smart Materials and Structures, 14, 1363(2005)
6 C Bonomo, L Fortuna, P Giannone, S Grazizni, S Strazzeri, A model for ionic polymer metal composites as sensors, Smart Materials and Structures, 15, 749(2006)
7 Kenneth M. Newbury, Donald J. Leo, Linear electromechanical model of ionic polymer transducers part: model development, Journal of Intelligent Material Systems and Structures, 14, 333(2003)
8 Sia Nemat-Nasser, Shahram Zamani, Modeling of electrochemomechanical response of ionic polymer-metal composite with various solvents, Journal of Applied Physics, 10, 064310(2006)
9 Kevin Farinholt, Donald J. Leo, Modeling of electromechanical charge sensing in ionic polymer transducers, Mechanics of Materials, 36, 421(2004)
10 Pyoungho Choi, Nikihil H.Jalani, Ravindra Datta, Thermodynamics and proton transport in nafion . membrane swelling, sorption, and ion-exchange equilibrium, Journal of The Electrochemical Society, 152(3), 84(2005)
11 Jason W. Paquette, Kwang J. Kim, Jae-Do Nam, Yong S. Tak, An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a claybased polymer nano-composite technique, Journal of Intelligent Material Systems and Structures, 14, 633(2003)
12 Kwangmok Jung, Jaedo Nam, Hyoukryeol Choi, Investigations on actuation characteristics of IPMC artificial muscle actuator, Sensors and Actuator, 107, 183(2003)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.