Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 175-179    
  研究论文 本期目录 | 过刊浏览 |
抗菌剂对聚乙烯表面生物被膜的抑制
李焕新1;2 ; 季君晖1
1.中国科学院理化技术研究所 北京 100190
2.中国科学院研究生院 北京 100049
Inhibitory effect of antimicrobial agent on biofilm formation on polyethylene surface
LI Huanxin12;  JI Junhui1
1.Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190
2.Graduate University of Chinese Academy of Sciences; Beijing 100049
引用本文:

李焕新 季君晖. 抗菌剂对聚乙烯表面生物被膜的抑制[J]. 材料研究学报, 2009, 23(2): 175-179.
. Inhibitory effect of antimicrobial agent on biofilm formation on polyethylene surface[J]. Chin J Mater Res, 2009, 23(2): 175-179.

全文: PDF(894 KB)  
摘要: 

采用共混方法在低密度聚乙烯中分别加入银系抗菌剂和Triclosan制备出两种改性聚乙烯, 研究了材料的抗菌性能和抗菌剂对试样表面生物被膜的抑制作用. 结果表明, 两种改性聚乙烯对大肠杆菌和金黄色葡萄球菌都有良好的抗菌效果;
细菌生物被膜的形成主要包括粘附、繁殖和成熟3个阶段, 添加Triclosan的试样可以在生物被膜成熟前显著杀灭样品表面的细菌, 阻止细菌在其表面粘附和繁殖, 从而抑制生物被膜形成. 空白试样和银系抗菌剂改性试样表面均有大量细菌粘附并形成生物被膜.

关键词 有机高分子材料细菌生物被膜抑制粘附感染    
Abstract

Triclosan and silver antibacterial agent were incorporated into polyethylene by blending. The antimicrobial efficacy of modified samples and inhibitory effect of antimicrobial agent on biofilm formation on the LDPE surface were investigated. The results showed that both of modified LDPE samples exhibited excellent antimicrobial performance against S. aureus and E. coli. The formation of  biofilm could be described as a three–stage process: adhesion, proliferation and biofilm maturation. The adhesion and propagation of bacteria were evidently reduced by triclosan added into LDPE, thereby the formation of biofilm was prevented. However, the amount of bacteria on the surface of LDPE adding silver antimicrobial agent was no less than that on the control sample. Silver antimicrobial agent could not make much difference in biofilm formation on surfaces.

Key wordsorganic polymer materials    biofilm    inhibition    adhesion    infection
收稿日期: 2008-08-01     
ZTFLH: 

TB324

 
基金资助:

中国科学院知识创新工程KGCX2--YW--608和浙江省重点科技攻关2005C21064资助项目.

1 Passerini L, Lam K, Costerton JW, King EG, Biofilms on indwelling vascular catheters, Crit Care Med., 20(5), 665(1992)
2 Morris NS, Stickler DJ, McLean RJ, The development of bacterial biofilms on indwelling urethral catheters, World J Urol., 17(6), 345(1999)
3 Archibald LK. Gaynes RP, Hospital acquired infections in the United States: the importance of interhospital comparisons, Infect Dis Clin North Am., 11(2), 245(1997)
4 Bouza E, Burillo A, Mu˜noz P, Catheter–related infections: diagnosis and intravascular treatment, Clin Microbiol Infect., 8(5), 265 (2002)
5 Stewart PS, Costerton JW, Antibiotic resistance of bacteria in biofilms, Lancet., 358(9276), 135(2001)
6 Prosser BL, Taylor D, Dix BA, Cleeland R, Method of evaluating effects of antibiotics on bacterial biofilm, Antimicrob Agents Chemother., 31(10), 1502(1987)
7 Gristina AG, Hobgood CD, Webb LX, Myrvik QN, Adhesive colonization of biomaterials and antibiotic resistance, Biomaterials, 8(6), 423(1987)
8 Costerton JW, Stewart PS, Greenberg EP, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318(1999)
9 Fux CA, Costerton JW, Stewart PS et al. Survival strategies of infectious biofilms, Trends Microbiol., 13(1), 34(2005)
10 Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection, J. Antimicrob Chemother., 54(6), 1019(2004)
11 Francolini I, Donelli G, Stoodley P, Polymer designs to control biofilm growth on medical devices, Rev. Environ Sci Bio/Technol., 2(2–4), 307(2003)
12 JI Junhui, SHI Weiming, Antimicrobial material (Beijing, Chemical Industry Press, 2003) p.304
(季君晖, 史维明, 抗菌材料 (北京, 化学工业出版社, 2003) p.304)
13 Zhang W, Chu PK, Ji JH, Zhang YH, Fu RKY, Yan Q, Antibacterial Properties of Plasma–Modified and Triclosan or Bronopol Coated Polyethylene, Polymer, 47(3), 931(2006)
14 Ali L, Khambaty F, Diachenki G, Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents, Bioresour Technol., 97(15), 1887(2006)
15 LI Jingbao, HAN Feng, YU Wengong, Model systems for bacterial biofilm research, Acta Microbiologica Sinica., 47(3), 558(2007)
(李京宝, 韩峰, 于文功, 细菌生物膜研究技术, 微生物学报,  47(3), 558(2007))
16 Tatar EC, Unal FO, Tatar I, Celik HH, Gursel B, Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow–up, Int. J. Pediatr Otorhinolaryngol., 70(3), 411(2006)
17 An YH, Friedman RJ, Concise review of mechanism of bacteria adhesion to biomaterial surfaces, J. Biomed Mater Res., 43(3), 338(1998)
18 Cook G, Costerton JW, Darouiche RO, Direct confocal microscopy studies of the bacterial colonization in vitro of a silver–coated heart valve sewing cuff, Int. J. Antimicrob Agents., 13(3), 169(2000)

[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.