Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 180-186    
  研究论文 本期目录 | 过刊浏览 |
几种单晶半导体材料在压痕下的变形与断裂行为比较
尧志刚;  朱晓飞 ; 张广平
中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳110016
Comparison of indentation-induced deformation and fracture of several kinds of semiconductor single crystals
YAO Zhigang ; ZHU Xiaofei;  ZHANG Guangping
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

尧志刚 朱晓飞 张广平. 几种单晶半导体材料在压痕下的变形与断裂行为比较[J]. 材料研究学报, 2009, 23(2): 180-186.
, . Comparison of indentation-induced deformation and fracture of several kinds of semiconductor single crystals[J]. Chin J Mater Res, 2009, 23(2): 180-186.

全文: PDF(1100 KB)  
摘要: 

采用显微压痕方法研究了Si、Ge、GaAs和InP四种半导体单晶的变形与断裂行为.通过测量[100]取向单晶体面内的显微硬度、裂纹开裂的临界压痕尺寸以及断裂韧性, 分析了这四种材料力学性能的面内各向异性行为. 结果表明: 在压痕载荷的作用下, Si和Ge的塑性变形以剪切断层为主, 而GaAs和InP则通过滑移系的开动协调变形. [100]取向的Si、Ge、GaAs和InP四种单晶的面内显微硬度、弹性模量和断裂韧性表现出不同程度的各向异性. 裂纹长度与压痕尺寸间的关系表明, 与GaAs和InP相比, Si、Ge具有较小的临界压痕尺寸和拟合直线斜率, 这一临界压痕尺寸和拟合直线斜率的变化规律分别与材料的硬度和断裂韧性的变化规律一致.

关键词 无机非金属材料半导体材料显微硬度变形断裂各向异性    
Abstract

Micro-indentation method was used to study deformation and fracture behavior of Si, Ge, GaAs, InP single crystals. In-plane microhardness, critical indentation size and fracture toughness of the [100] oriented crystals were measured to analyze anisotropic mechanical properties of these materials. The results show that under the indentation load, Si and Ge deformed through the formation of shear faults, while the activation of slip systems accommodated the deformation of GaAs and InP. The microhardness, elastic modulus and fracture toughness exhibit anisotropic at different extent. The relationship between crack length and indent size shows that the critical indent size and the linearly-fitted slope of the crack length vs. indent size of Si and Ge single crystals are smaller than that of GaAs and InP. The variations of the critical indent size and the linear slope are consistent with that of the hardness and fracture toughness.

Key wordsinorganic non-metallic materials    semiconductor    microhardness    deformation    fracture toughness    anisotropy
收稿日期: 2008-04-24     
ZTFLH: 

TB321

 
基金资助:

2007年中--澳科技合作特别基金及国家重点基础研究发展规划项目2004CB619303资助.

1 K.E.Petersen, Silicon as a mechanical material, Processding of the IEEE, 70, 420(1982) 2 S.Adachi, GaAs, AlAs, and AlxGa1−xAsB: Material parameters for use in research and device applications, J Appl Phys, 58, R1(1985) 3 I.Yonenaga, U.Onose, K.Sumino, Mechanical properties of GaAs crystals, J. Mater. Res., 2, 252(1987) 4 T.P.Pearsall, Properties, Processing and Applications of Indium Phosphide, New EMIS Proceedings Series, (London, INSPEC, 1999) p.68 5 S.M.Spearing, Materials issues in microelectromechanical systems (MEMS), Acta Mater, 48, 179(2000) 6 S.Koubaiti, J.J.Couderc, C.Levade, G.Vanderschaeve, Photoplastic effect and Vickers microhardness in III-V and II-VI semiconductor compounds, Mater Sci and Eng A, 234-236, 865(1997) 7 R.Navamathavan, D.Arivuoli, G.Attolini, C.Pelosi, C.K.Choi, Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys, Physica B: Condensed Matter, 392, 51(2007) 8 S.Wang, P.Pirouz, Mechanical properties of undoped GaAs. III: Indentation experiments, Acta Mater, 55, 5526(2007) 9 G.M.Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. and Eng. A, 253, 151(1998) 10 I.Yonenaga, Mechanical Properties and Dislocation Dynamics in III-V Compounds, J. Phys. III, 7, 1435(1997) 11 I.Yonenaga, T.Suzuki, Indentation hardnesses of semiconductors and a scaling rule, Philos. Mag. Lett., 82, 535(2002) 12 E.Le Bourhis, G.Patriarche, Plastic deformation of IIIV semiconductors under concentrated load, Progress in Crystal Growth and Characterization of Materials, 47, 1(2003) 13 L.J.Vandeperre, F.Giuliani, S.J.Lloyd, W.J.Clegg, The hardness of silicon and germanium, Acta Mater, 6307(2007) 14 A.Kailer, Y.G.Gogotsi, K.G.Nickel, Phase transformations of silicon caused by contact loading, J Appl Phys, 81, 3057(1997) 15 F.Cleri, S.Yip, D.Wolf, S.R.Phillpot, Atomic-scale mechanism of crack-tip plasticity: Dislocation nucleation and crack-tip shielding, Phys. Rev. Lett., 79, 1309(1997) 16 R.Perez, P.Gumbsch, Directional anisotropy in the cleavage fracture of silicon, Phys. Rev. Lett., 84, 5347(2000) 17 F.Ebrahimi, L.Kalwani, Fracture anisotropy in silicon single crystal, Mater Sci and Eng A, 268, 116(1999) 18 R.F.Cook, Strength and sharp contact fracture of silicon, J Mater Sci, 41, 841(2006) 19 J.J.Wortman, R.A.Evans, Youngs Modulus, Shear Modulus, and Poissons Ratio in Silicon and Germanium, J Appl Phys, 36, 153(1965) 20 Y.T.Cheng, C.M.Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl Phys Lett, 614(1998) 21 Y.T.Cheng, C.M.Cheng, Scaling, dimensional analysis, and indentation measurements, Mater Sci and Eng R, 91(2004) 22 K.Zeng, E.Soderlund, A.E.Giannakopoulos, D.J.Rowcliffe, Controlled indentation: A general approach to determine mechanical properties of brittle materials, Acta Mater, 44, 1127(1996) 23 B.R.Lawn, A.G.Evans, D.B.Marshall, Elastic/Plastic Indentation Damage in Ceramics: the Median/Radial Crack System, J. Am. Ceram. Soc., 63, 574(1980) 24 B.R.Lawn, E.R.Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10, 2016(1975)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[9] 周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
[10] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[12] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[13] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[14] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.