Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 952-960    DOI: 10.11901/1005.3093.2023.103
  研究论文 本期目录 | 过刊浏览 |
自组装碳/环氧树脂复合吸波涂料的制备及性能
徐文玉, 孙佳文, 朱曜峰()
浙江理工大学材料科学与工程学院 杭州 310018
Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating
XU Wenyu, SUN Jiawen, ZHU Yaofeng()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
引用本文:

徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能[J]. 材料研究学报, 2023, 37(12): 952-960.
Wenyu XU, Jiawen SUN, Yaofeng ZHU. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. Chinese Journal of Materials Research, 2023, 37(12): 952-960.

全文: PDF(8166 KB)   HTML
摘要: 

先用静电自组装-高温碳化法制备多界面自组装碳(CS@rGO)吸波剂,然后以环氧树脂(EP)为基体用物理混合法制备自组装碳/环氧树脂(CS@rGO/EP)复合功能涂料,表征其结构并研究了吸波性能和抗腐蚀性能。结果表明:这种涂料具有良好的吸波性能,吸波剂含量为20%、涂层厚度为1.1 mm的试样其最小反射损耗值为-25.03 dB;将试样在不同的介质溶液中浸渍30 d后在5%的NaCl和NaOH介质溶液中的附着力良好,其腐蚀速率较低(6.53×10-6 mm·a-1)和保护效率较高(92.86%)。

关键词 复合材料吸波材料静电自组装-高温碳化自组装碳/环氧树脂复合涂料防腐性能    
Abstract

Electromagnetic absorbing material is one of the key materials for the realization of equipment stealth protection. Moreover, electromagnetic absorbing materials with high electromagnetic absorption and corrosion resistance will play a key role in special marine environments. Herein, the CS@rGO/EP composite functional coating with excellent microwave absorbing performance and anti-corrosion properties is successfully fabricated through physical mixing method with CS@rGO as wave absorbing filler, and the epoxy resin (EP) as matrix. The structure and properties of the CS@rGO/EP composite functional coating were characterized. The results display that the CS@rGO/EP composite functional coating possess excellent microwave absorbing properties. When the CS@rGO absorber content is 20% and the coating thickness is 1.1mm, the minimum reflection loss value of the coating can reach -25.03 dB. Meanwhile, the coating can maintain well adhesion to the steel substrate after the coating/Q235 carbon steel plate has been immersed in 5%NaCl or NaOH solutions for 30 days, and electrochemical tests manifest that the corrosion rate of the coating/Q235 steel is as low as (6.53×10-6 mm·a-1), i.e. a high protection efficiency (92.86%). All in all, the good comprehensive performance of CS@rGO/EP composite functional coating shows its great application potential in special service environments.

Key wordscomposites    absorbing materials    electrostatic self-assembly-high temperature carbonization    self-assembled carbon/epoxy composite coatings    anti-corrosion properties
收稿日期: 2023-01-29     
ZTFLH:  TB332  
通讯作者: 朱曜峰,教授,yfzhu@zstu.edu.cn,研究方向为智能高分子材料
Corresponding author: ZHU Yaofeng, Tel: (0571)86843607, E-mail: yfzhu@zstu.edu.cn
作者简介: 徐文玉,女,1998年生,硕士生
图1  自组装碳/环氧树脂(CS@rGO/EP)复合功能涂料的制备流程
GradeShedding situation
1The shedding area of the coating surface accounts for more than 30% of the entire coating surface
2The shedding area of the coating surface accounts for less than 30% of the entire coating surface
3The shedding area of the coating surface accounts for less than 10% of the entire coating surface
4The shedding area of the coating surface accounts for less than 5% of the entire coating surface
5No shedding phenomenon on the coating surface
表1  涂层表面脱落的等级评价标准
图2  CS和CS@rGO的FESEM图、TEM照片、各试样表面的FESEM图、各试样截面的FESEM图以及试样的XRD谱和FT-IR谱
图3  CS@rGO/EP的吸波性能
图4  试样涂层附着力和耐介质性的测试效果
Sample5%NaCl5%NaOH5%HCl
SF-521Entirely shedding
SF-1021Entirely shedding
SF-1531Entirely shedding
SF-2042Entirely shedding
SF-2542Entirely shedding
表2  不同涂层的耐介质性能
图5  涂层的防腐性能
SampleEcorr / VIcorr / A·cm-2V / mm·a-1EPE / %
Steel plate-0.7957.87×10-99.17×10-5-
Pure epoxy resin coating-0.6983.16×10-93.67×10-559.85
CS@rGO/EP coating-0.3585.62×10-106.53×10-692.86
表3  试样在溶液中浸泡21 d后的Tafel曲线拟合值
1 Jiang X Y, Wan W H, Wang B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals [J]. Appl. Surf. Sci., 2022, 572
2 Wang Y, Di X C, Chen J, et al. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation [J]. Carbon, 2022, 191: 625
doi: 10.1016/j.carbon.2022.02.016
3 Xu Y, Huang X X, Zhong B, et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials [J]. Chem. Eng. J., 2020, 391: 123538
doi: 10.1016/j.cej.2019.123538
4 Wei T, Zhang X Z, Yang G, et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption [J]. Carbon, 2021, 173: 185
doi: 10.1016/j.carbon.2020.11.002
5 Zhang X Z, Guo Y, Ali Rashad, et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance [J]. J. Alloys Compd., 2020, 828: 154079
doi: 10.1016/j.jallcom.2020.154079
6 Gai L X, Zhao H H, Wang F Y, et al. Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption [J]. Nano Res., 2022, 15: 9410
doi: 10.1007/s12274-022-4695-6
7 Li Q, Zhang Z Z, Qi L P, et al. Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures [J]. Adv. Sci., 2019, 6(8): 1801057
doi: 10.1002/advs.v6.8
8 Yang W D, Liu Y J. The latest research progress of graphene-based composite absorbing materials [J]. Silk, 2021, 58(07): 51
8 杨文栋, 刘元军. 石墨烯基复合吸波材料的最新研究进展 [J]. 丝绸, 2021, 58(07): 51
9 Lai Y Y, Lv LZ, Fu H Q. Preparation and study of Al2O3@PPy@rGOcomposites with microwave absorption properties [J]. J. Alloys Compd., 2020, 832: 152957
doi: 10.1016/j.jallcom.2019.152957
10 Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
doi: 10.1016/j.cej.2019.05.034
11 Tian Y Q, Wang W H, Zhong L, et al. Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061 [J]. Prog. Org. Coat., 2022, 163: 106655
12 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
13 Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl‐layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
14 Yang W T. Preparation and application of conductive polyaniline modified carbon composite absorbers [D]. Hangzhou: Zhejiang Sci-Tech University, 2020
14 杨汶童. 导电聚苯胺修饰碳复合吸波材料的制备及应用探索 [D]. 杭州: 浙江理工大学, 2020
15 Shi P P. Preparation and research of reduced graphene oxide/ferric oxide/polyaniline microwave absorbing anticorrosion nanocomposite [D]. Yangzhou: Yangzhou University, 2018
15 史萍萍. 还原氧化石墨烯/四氧化三铁/聚苯胺吸波防腐纳米复合材料的制备及研究 [D]. 扬州: 扬州大学, 2018
16 Souto L F C, Soares B G. Polyaniline/carbon nanotube hybrids modified with ionic liquids as anticorrosive additive in epoxy coatings [J]. Prog. Org. Coat., 2020, 143: 105598
17 Zhu Q S, Li E, Liu X H, et al. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance [J]. Prog. Org. Coat., 2020, 140: 105488
18 Yan L L, Li L L, Ru X X, et al. Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption [J]. Carbon, 2021, 173: 145
doi: 10.1016/j.carbon.2020.10.095
19 Liu X F, Nie X Y, Yu R H, et al. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy [J]. Chem. Eng. J., 2018, 334: 153
doi: 10.1016/j.cej.2017.10.012
20 Wu H J, Zhao Z H, Wu G L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption [J]. J. Colloid Interface Sci., 2020, 566: 21
doi: 10.1016/j.jcis.2020.01.064
21 Xu H L, Yin X W, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption [J]. ACS Appl. Mater. Interfaces, 2017, 9(7): 6332
doi: 10.1021/acsami.6b15826
22 Tong Z Y, Liao Z J, Liu Y Y, et al. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption [J]. Carbon, 2021, 179: 646
doi: 10.1016/j.carbon.2021.04.051
23 Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6(98): 95965
doi: 10.1039/C6RA19618G
24 Liu Y, Su X L, Luo F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating [J]. J. Mater. Sci. Mater. Electron., 2018, 29(3): 2500
doi: 10.1007/s10854-017-8172-z
25 Deng H W, Yang Q Z, Zhang Z Q, et al. Temperature dependence of the microwave absorption performance of carbonyl iron powder/boron-modified phenolic resin composite coating [J]. Appl. Phys. A, 2022, 128(3): 251
doi: 10.1007/s00339-022-05373-8
26 Deng H W, Yang Q Z, Zhang Z Q, et al. Y2Mo3O12 modified carbonyl iron powder-boron-phenolic resin coatings for microwave absorption [J]. Appl. Phys. A, 2022, 128(10): 888
doi: 10.1007/s00339-022-05990-3
27 Wu H J, Liu J L, Liang H S, et al. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 393: 124743
doi: 10.1016/j.cej.2020.124743
28 Zhang X, An J W, Ji C, et al. Electromagnetic and microwave absorption properties of Ti3SiC2/NiFe2O4/epoxy resin coatings [J]. J. Mater. Sci. Mater. Electron., 2021, 32(20): 25363
doi: 10.1007/s10854-021-06996-y
29 Zhou L, Yu J J, Chen M, et al. Influence of particle size on the microwave absorption properties of FeSiAl/ZnO-filled resin composite coatings [J]. J. Mater. Sci. Mater. Electron., 2020, 31(3): 2446
doi: 10.1007/s10854-019-02781-0
30 Przybył W, Januszko A, Radek N, et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications [J]. Def. Technol., 2022, 22: 1
31 Ma G J, Zeng Y S, Yang X, et al. Wave-transmitting material to optimize impedance matching and enhance microwave absorption properties of flaky carbonyl iron coating [J]. J. Mater. Sci. Mater. Electron., 2020, 31(11): 8627
doi: 10.1007/s10854-020-03398-4
32 Zhou L, Yu J J, Wang H B, et al. Dielectric and microwave absorption properties of resin-matrix composite coating filled with multi-wall carbon nanotubes and Ti3SiC2 particles [J]. J. Mater. Sci. Mater. Electron., 2020, 31(18): 15852
doi: 10.1007/s10854-020-04147-3
33 Hosseini H, Mahdavi H. Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material [J]. Appl. Organomet. Chem., 2018, 32(4): 4294
34 Shu R W, Wan Z L, Zhang J B, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance [J]. Compos Sci Technol, 2021, 210: 108818
doi: 10.1016/j.compscitech.2021.108818
35 Zhang X C, Zhang X, Yuan H R, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 383: 123208
doi: 10.1016/j.cej.2019.123208
36 Abdalla I, Elhassan A, Yu J Y, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption [J]. Carbon, 2020, 157: 703
doi: 10.1016/j.carbon.2019.11.004
37 Gao Z G, Ma Z H, Lan D, et al. Synergistic polarization loss of MoS2‐based multiphase solid solution for electromagnetic wave absorption [J]. Adv. Funct. Mater., 2022, 37(18): 2112294
38 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
39 Talebi H, Olad A, Nosrati R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber [J]. Prog. Org. Coat., 2022, 163: 106665
40 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
41 Duan Y, Liu Y, Cui Y L, et al. Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating [J]. Prog. Org. Coat., 2018, 125: 89
42 Cao Z F, Xia Y Q, Chen C. Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties [J]. Tribol Int, 2018, 120: 446
doi: 10.1016/j.triboint.2018.01.009
43 Wang H S, Shi P P, Rui M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption [J]. Prog. Org. Coat, 2020, 139: 105476
44 Li C, Li Y, Wang X, et al. Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings [J]. Corros Sci, 2021, 178: 109094
doi: 10.1016/j.corsci.2020.109094
45 Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl-Layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
46 Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution [J]. Corros Sci, 2019, 152: 120
doi: 10.1016/j.corsci.2019.03.007
47 Ren H S, Li T, Wang H G, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection [J]. Chem. Eng. J., 2022, 427: 131582
doi: 10.1016/j.cej.2021.131582
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 董哲瑄, 陈平, 刘兴达. 等离子体处理对CF/PI复合材料高温界面性能的影响[J]. 材料研究学报, 2023, 37(12): 900-906.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.