|
|
自组装碳/环氧树脂复合吸波涂料的制备及性能 |
徐文玉, 孙佳文, 朱曜峰( ) |
浙江理工大学材料科学与工程学院 杭州 310018 |
|
Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating |
XU Wenyu, SUN Jiawen, ZHU Yaofeng( ) |
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能[J]. 材料研究学报, 2023, 37(12): 952-960.
Wenyu XU,
Jiawen SUN,
Yaofeng ZHU.
Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. Chinese Journal of Materials Research, 2023, 37(12): 952-960.
1 |
Jiang X Y, Wan W H, Wang B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals [J]. Appl. Surf. Sci., 2022, 572
|
2 |
Wang Y, Di X C, Chen J, et al. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation [J]. Carbon, 2022, 191: 625
doi: 10.1016/j.carbon.2022.02.016
|
3 |
Xu Y, Huang X X, Zhong B, et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials [J]. Chem. Eng. J., 2020, 391: 123538
doi: 10.1016/j.cej.2019.123538
|
4 |
Wei T, Zhang X Z, Yang G, et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption [J]. Carbon, 2021, 173: 185
doi: 10.1016/j.carbon.2020.11.002
|
5 |
Zhang X Z, Guo Y, Ali Rashad, et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance [J]. J. Alloys Compd., 2020, 828: 154079
doi: 10.1016/j.jallcom.2020.154079
|
6 |
Gai L X, Zhao H H, Wang F Y, et al. Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption [J]. Nano Res., 2022, 15: 9410
doi: 10.1007/s12274-022-4695-6
|
7 |
Li Q, Zhang Z Z, Qi L P, et al. Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures [J]. Adv. Sci., 2019, 6(8): 1801057
doi: 10.1002/advs.v6.8
|
8 |
Yang W D, Liu Y J. The latest research progress of graphene-based composite absorbing materials [J]. Silk, 2021, 58(07): 51
|
8 |
杨文栋, 刘元军. 石墨烯基复合吸波材料的最新研究进展 [J]. 丝绸, 2021, 58(07): 51
|
9 |
Lai Y Y, Lv LZ, Fu H Q. Preparation and study of Al2O3@PPy@rGOcomposites with microwave absorption properties [J]. J. Alloys Compd., 2020, 832: 152957
doi: 10.1016/j.jallcom.2019.152957
|
10 |
Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
doi: 10.1016/j.cej.2019.05.034
|
11 |
Tian Y Q, Wang W H, Zhong L, et al. Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061 [J]. Prog. Org. Coat., 2022, 163: 106655
|
12 |
Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
|
13 |
Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl‐layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
|
14 |
Yang W T. Preparation and application of conductive polyaniline modified carbon composite absorbers [D]. Hangzhou: Zhejiang Sci-Tech University, 2020
|
14 |
杨汶童. 导电聚苯胺修饰碳复合吸波材料的制备及应用探索 [D]. 杭州: 浙江理工大学, 2020
|
15 |
Shi P P. Preparation and research of reduced graphene oxide/ferric oxide/polyaniline microwave absorbing anticorrosion nanocomposite [D]. Yangzhou: Yangzhou University, 2018
|
15 |
史萍萍. 还原氧化石墨烯/四氧化三铁/聚苯胺吸波防腐纳米复合材料的制备及研究 [D]. 扬州: 扬州大学, 2018
|
16 |
Souto L F C, Soares B G. Polyaniline/carbon nanotube hybrids modified with ionic liquids as anticorrosive additive in epoxy coatings [J]. Prog. Org. Coat., 2020, 143: 105598
|
17 |
Zhu Q S, Li E, Liu X H, et al. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance [J]. Prog. Org. Coat., 2020, 140: 105488
|
18 |
Yan L L, Li L L, Ru X X, et al. Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption [J]. Carbon, 2021, 173: 145
doi: 10.1016/j.carbon.2020.10.095
|
19 |
Liu X F, Nie X Y, Yu R H, et al. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy [J]. Chem. Eng. J., 2018, 334: 153
doi: 10.1016/j.cej.2017.10.012
|
20 |
Wu H J, Zhao Z H, Wu G L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption [J]. J. Colloid Interface Sci., 2020, 566: 21
doi: 10.1016/j.jcis.2020.01.064
|
21 |
Xu H L, Yin X W, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption [J]. ACS Appl. Mater. Interfaces, 2017, 9(7): 6332
doi: 10.1021/acsami.6b15826
|
22 |
Tong Z Y, Liao Z J, Liu Y Y, et al. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption [J]. Carbon, 2021, 179: 646
doi: 10.1016/j.carbon.2021.04.051
|
23 |
Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6(98): 95965
doi: 10.1039/C6RA19618G
|
24 |
Liu Y, Su X L, Luo F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating [J]. J. Mater. Sci. Mater. Electron., 2018, 29(3): 2500
doi: 10.1007/s10854-017-8172-z
|
25 |
Deng H W, Yang Q Z, Zhang Z Q, et al. Temperature dependence of the microwave absorption performance of carbonyl iron powder/boron-modified phenolic resin composite coating [J]. Appl. Phys. A, 2022, 128(3): 251
doi: 10.1007/s00339-022-05373-8
|
26 |
Deng H W, Yang Q Z, Zhang Z Q, et al. Y2Mo3O12 modified carbonyl iron powder-boron-phenolic resin coatings for microwave absorption [J]. Appl. Phys. A, 2022, 128(10): 888
doi: 10.1007/s00339-022-05990-3
|
27 |
Wu H J, Liu J L, Liang H S, et al. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 393: 124743
doi: 10.1016/j.cej.2020.124743
|
28 |
Zhang X, An J W, Ji C, et al. Electromagnetic and microwave absorption properties of Ti3SiC2/NiFe2O4/epoxy resin coatings [J]. J. Mater. Sci. Mater. Electron., 2021, 32(20): 25363
doi: 10.1007/s10854-021-06996-y
|
29 |
Zhou L, Yu J J, Chen M, et al. Influence of particle size on the microwave absorption properties of FeSiAl/ZnO-filled resin composite coatings [J]. J. Mater. Sci. Mater. Electron., 2020, 31(3): 2446
doi: 10.1007/s10854-019-02781-0
|
30 |
Przybył W, Januszko A, Radek N, et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications [J]. Def. Technol., 2022, 22: 1
|
31 |
Ma G J, Zeng Y S, Yang X, et al. Wave-transmitting material to optimize impedance matching and enhance microwave absorption properties of flaky carbonyl iron coating [J]. J. Mater. Sci. Mater. Electron., 2020, 31(11): 8627
doi: 10.1007/s10854-020-03398-4
|
32 |
Zhou L, Yu J J, Wang H B, et al. Dielectric and microwave absorption properties of resin-matrix composite coating filled with multi-wall carbon nanotubes and Ti3SiC2 particles [J]. J. Mater. Sci. Mater. Electron., 2020, 31(18): 15852
doi: 10.1007/s10854-020-04147-3
|
33 |
Hosseini H, Mahdavi H. Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material [J]. Appl. Organomet. Chem., 2018, 32(4): 4294
|
34 |
Shu R W, Wan Z L, Zhang J B, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance [J]. Compos Sci Technol, 2021, 210: 108818
doi: 10.1016/j.compscitech.2021.108818
|
35 |
Zhang X C, Zhang X, Yuan H R, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 383: 123208
doi: 10.1016/j.cej.2019.123208
|
36 |
Abdalla I, Elhassan A, Yu J Y, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption [J]. Carbon, 2020, 157: 703
doi: 10.1016/j.carbon.2019.11.004
|
37 |
Gao Z G, Ma Z H, Lan D, et al. Synergistic polarization loss of MoS2‐based multiphase solid solution for electromagnetic wave absorption [J]. Adv. Funct. Mater., 2022, 37(18): 2112294
|
38 |
Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
|
39 |
Talebi H, Olad A, Nosrati R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber [J]. Prog. Org. Coat., 2022, 163: 106665
|
40 |
Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
|
41 |
Duan Y, Liu Y, Cui Y L, et al. Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating [J]. Prog. Org. Coat., 2018, 125: 89
|
42 |
Cao Z F, Xia Y Q, Chen C. Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties [J]. Tribol Int, 2018, 120: 446
doi: 10.1016/j.triboint.2018.01.009
|
43 |
Wang H S, Shi P P, Rui M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption [J]. Prog. Org. Coat, 2020, 139: 105476
|
44 |
Li C, Li Y, Wang X, et al. Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings [J]. Corros Sci, 2021, 178: 109094
doi: 10.1016/j.corsci.2020.109094
|
45 |
Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl-Layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
|
46 |
Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution [J]. Corros Sci, 2019, 152: 120
doi: 10.1016/j.corsci.2019.03.007
|
47 |
Ren H S, Li T, Wang H G, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection [J]. Chem. Eng. J., 2022, 427: 131582
doi: 10.1016/j.cej.2021.131582
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|