|
|
亚稳 β 钛合金热处理显微组织演变和元素再分配行为 |
张瑞雪1,2, 马英杰2, 贾焱迪2, 黄森森2, 雷家峰2, 邱建科2, 王平1( ), 杨锐2 |
1.东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819 2.中国科学院金属研究所 沈阳 110016 |
|
Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy |
ZHANG Ruixue1,2, MA Yingjie2, JIA Yandi2, HUANG Sensen2, LEI Jiafeng2, QIU Jianke2, WANG Ping1( ), YANG Rui2 |
1.Key Laboratory of EPM, Ministry of Education, Northeastern University, Shenyang 110819, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
Ruixue ZHANG,
Yingjie MA,
Yandi JIA,
Sensen HUANG,
Jiafeng LEI,
Jianke QIU,
Ping WANG,
Rui YANG.
Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 161-167.
1 |
Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys [J]. J. Alloys Compd., 2008, 457(1-2): 296
doi: 10.1016/j.jallcom.2007.03.070
|
2 |
Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β titanium alloys as biomedical materials [J]. Int. Mater. Rev., 2020, 66(2): 114
doi: 10.1080/09506608.2020.1735829
|
3 |
Kang L, Yang C. A Review on high-strength titanium alloys: microstructure, strengthening, and properties [J]. Adv. Eng. Mater., 2019, 21: 1801359
doi: 10.1002/adem.v21.8
|
4 |
Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy [J]. Chin. J. Mater. Res., 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
|
4 |
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为 [J]. 材料研究学报, 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
|
5 |
Liu X Y, Liu K J, Yang X R, et al. Fatigue crack propagation behavior of ultrafine grained pure titanium [J]. Chin. J. Mater. Res., 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
|
5 |
刘晓燕, 柳奎君, 杨西荣 等. 超细晶纯钛疲劳裂纹的扩展行为 [J]. 材料研究学报, 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
|
6 |
Sun Z, Guo S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+β phase field [J]. Acta Mater., 2013, 61(6): 2057
doi: 10.1016/j.actamat.2012.12.025
|
7 |
Li T, Kent D, Sha G, et al. The mechanism of ω-assisted α phase formation in near β-Ti alloys [J]. Scr. Mater., 2015, 104: 75
doi: 10.1016/j.scriptamat.2015.04.007
|
8 |
Lai M J, Li T, Yan F K, et al. Revisiting ω phase embrittlement in metastable β titanium alloys: Role of elemental partitioning [J]. Scr. Mater., 2021, 193: 38
doi: 10.1016/j.scriptamat.2020.10.031
|
9 |
Tang B, Chu Y, Zhang M, et al. The ω phase transformation during the low temperature aging and low rate heating process of metastable β titanium alloys [J]. Mater. Chem. Phys., 2020, 239: 122125
doi: 10.1016/j.matchemphys.2019.122125
|
10 |
Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57(7): 2136
doi: 10.1016/j.actamat.2009.01.007
|
11 |
Zheng Y F, Williams R E, Sosa J M, et al. The indirect influence of the omega phase on the degree of refinement of distributions of the alpha phase in metastable beta titanium alloys [J]. Acta Mater., 2016, 103: 165
doi: 10.1016/j.actamat.2015.09.053
|
12 |
Pham T N, Ohno K, Sahara R, et al. Clear evidence for element partitioning effects in a Ti-6Al-4V alloy by the first-principles phase field method [J]. J. Phys. Condens. Matter, 2020, 32: 264001
doi: 10.1088/1361-648X/ab7ad5
|
13 |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α+β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
doi: 10.1016/j.jallcom.2019.03.332
|
14 |
Gao X, Zeng W, Zhang S, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
doi: 10.1016/j.actamat.2016.10.012
|
15 |
Huang S, Zhao Q, Wu C, et al. Effects of β-stabilizer elements on microstructure formation and mechanical properties of titanium alloys [J]. J. Alloys Compd., 2021, 876: 160085
doi: 10.1016/j.jallcom.2021.160085
|
16 |
Ohsaka K, Trinh E H, Holzer J C, et al. Gibbs free-energy difference between the undercooling liquid and the beta-phase of a Ti-Cr alloy [J]. Appl. Phys. Lett., 1992, 60(9): 1079
doi: 10.1063/1.106450
|
17 |
Zhang R X, Ma Y J, Qi M, et al. The effect of precursory α and ω phase on microstructure evolution and tensile properties of metastable β titanium alloy [J]. J. Mater. Res. Technol., 2022, 16: 912
doi: 10.1016/j.jmrt.2021.12.066
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|