Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 161-167    DOI: 10.11901/1005.3093.2022.080
  研究论文 本期目录 | 过刊浏览 |
亚稳 β 钛合金热处理显微组织演变和元素再分配行为
张瑞雪1,2, 马英杰2, 贾焱迪2, 黄森森2, 雷家峰2, 邱建科2, 王平1(), 杨锐2
1.东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy
ZHANG Ruixue1,2, MA Yingjie2, JIA Yandi2, HUANG Sensen2, LEI Jiafeng2, QIU Jianke2, WANG Ping1(), YANG Rui2
1.Key Laboratory of EPM, Ministry of Education, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
Ruixue ZHANG, Yingjie MA, Yandi JIA, Sensen HUANG, Jiafeng LEI, Jianke QIU, Ping WANG, Rui YANG. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 161-167.

全文: PDF(16073 KB)   HTML
摘要: 

研究了在不同固溶及时效热处理条件下Ti-5Al-5Mo-5V-3Cr-0.6Fe亚稳β钛合金的显微组织演变和元素的再分配行为。在β单相区固溶保温后炉冷至(α+β)两相区的两阶段固溶处理,合金中生成了连续粗大的α晶界(αGB)和少量的晶内初生α相(αp);进一步进行低温/高温两阶段的时效热处理,在低温时效过程中初步形成的ω相对在高温终时效过程中生成的次生α(αs)片层尺寸有显著的影响。用电子探针显微分析表征热处理过程中α相和β相之间的元素再分配行为并讨论了对上述显微组织演变的影响。结果表明,在固溶热处理过程中αGBαp附近的元素再分配使α相附近局部β稳定元素的含量较高,提高了该区域β基体的稳定性,在低温时效过程中出现了无ω相析出的区域。在高温终时效过程中,在ω相辅助形核的作用下晶内析出的αs片层尺寸较小,而在αGB附近约2 μm范围内,因没有ω相的辅助生成的αs片层尺寸较大。

关键词 金属材料亚稳β钛合金元素再分配ω组织演变    
Abstract

The phase transformation of high-strength Ti-alloy is complex and closely related to the element partitioning during heat-treatment. The microstructure evolution and element partitioning behavior of metastable Ti-alloy Ti-5Al-5Mo-5V-3Cr-0.6Fe, being subjected to different solution and aging treatments were studied. The results showed that after β solution-treatment followed by furnace cooling to (α+β) solution-treatment, α grain boundary (αGB) and a small amount of intracrystalline primary α(αp) could form in the alloy. Next, after a two-stage aging-treatment at low-temperature and high-temperature, the ω-phase precipitated during low-temperature aging could affect the size of secondary α(αs)-lamellar formed during high-temperature aging. The electron probe microanalysis was used to characterize the typical element partitioning effect occurred between α- and β-phase, during solution-treatment, and of which the influence on the microstructure evolution is discussed. The element partitioning behavior led to higher content of β stabilizing elements near αGB and αp, which improved the stability of β matrix in the above region. The precipitation free zone formed near αGB and αp during low-temperature. After high-temperature aging, the refined αs precipitated away from αGB induced by the ω-phase assisted nucleation. While the size of αs was larger within 2 μm nearby αGB owning to the absence of ω-assisted nucleation.

Key wordsmetallic materials    metastable β titanium alloy    element partitioning    ω phase    microstructure evolution
收稿日期: 2022-01-28     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51871225);中国科学院A类先导专项(XDA22010101)
通讯作者: 王平,教授,wping@epm.neu.edu.cn,研究方向为有色金属组织演变与性能优化
Corresponding author: WANG Ping, Tel: 13340029004, E-mail: wping@epm.neu.edu.cn
作者简介: 张瑞雪,女,1992年生,博士生
ElementsAlMoVCrFeSi
Ti-5553-0.6Fe5.095.234.902.780.510.01
表1  实验用Ti-5553-0.6Fe合金的化学成分
DesignationHeat-treatment parameters
ST-830~750830℃/1 h furnace-cooled (1℃/min) to 750℃/1 h—W.Q.
AT-350350℃/10 h—A.C.
AT-350+560350℃/10 h—A.C. and 560℃/4 h—A.C.
表2  实验用Ti-5553-0.6Fe合金的热处理工艺参数
图1  经单相区固溶后Ti-5553-0.6Fe合金的金相组织
图2  Ti-5553-0.6Fe合金固溶条件下的SEM显微形貌
图3  低温时效Ti-5553-0.6Fe合金的SEM和TEM显微形貌
图4  终时效后Ti-5553-0.6Fe合金的SEM显微形貌
图5  Ti-5553-0.6Fe固溶样品在持续升温过程中的DSC曲线
图6  经不同热处理后Ti-5553-0.6Fe合金中元素的分布
图7  在固溶和低温时效条件下Ti-5553-0.6Fe合金αGB附近沿图6中箭头方向元素浓度的变化
1 Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys [J]. J. Alloys Compd., 2008, 457(1-2): 296
doi: 10.1016/j.jallcom.2007.03.070
2 Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β titanium alloys as biomedical materials [J]. Int. Mater. Rev., 2020, 66(2): 114
doi: 10.1080/09506608.2020.1735829
3 Kang L, Yang C. A Review on high-strength titanium alloys: microstructure, strengthening, and properties [J]. Adv. Eng. Mater., 2019, 21: 1801359
doi: 10.1002/adem.v21.8
4 Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy [J]. Chin. J. Mater. Res., 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
4 席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为 [J]. 材料研究学报, 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
5 Liu X Y, Liu K J, Yang X R, et al. Fatigue crack propagation behavior of ultrafine grained pure titanium [J]. Chin. J. Mater. Res., 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
5 刘晓燕, 柳奎君, 杨西荣 等. 超细晶纯钛疲劳裂纹的扩展行为 [J]. 材料研究学报, 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
6 Sun Z, Guo S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+β phase field [J]. Acta Mater., 2013, 61(6): 2057
doi: 10.1016/j.actamat.2012.12.025
7 Li T, Kent D, Sha G, et al. The mechanism of ω-assisted α phase formation in near β-Ti alloys [J]. Scr. Mater., 2015, 104: 75
doi: 10.1016/j.scriptamat.2015.04.007
8 Lai M J, Li T, Yan F K, et al. Revisiting ω phase embrittlement in metastable β titanium alloys: Role of elemental partitioning [J]. Scr. Mater., 2021, 193: 38
doi: 10.1016/j.scriptamat.2020.10.031
9 Tang B, Chu Y, Zhang M, et al. The ω phase transformation during the low temperature aging and low rate heating process of metastable β titanium alloys [J]. Mater. Chem. Phys., 2020, 239: 122125
doi: 10.1016/j.matchemphys.2019.122125
10 Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57(7): 2136
doi: 10.1016/j.actamat.2009.01.007
11 Zheng Y F, Williams R E, Sosa J M, et al. The indirect influence of the omega phase on the degree of refinement of distributions of the alpha phase in metastable beta titanium alloys [J]. Acta Mater., 2016, 103: 165
doi: 10.1016/j.actamat.2015.09.053
12 Pham T N, Ohno K, Sahara R, et al. Clear evidence for element partitioning effects in a Ti-6Al-4V alloy by the first-principles phase field method [J]. J. Phys. Condens. Matter, 2020, 32: 264001
doi: 10.1088/1361-648X/ab7ad5
13 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α+β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
doi: 10.1016/j.jallcom.2019.03.332
14 Gao X, Zeng W, Zhang S, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
doi: 10.1016/j.actamat.2016.10.012
15 Huang S, Zhao Q, Wu C, et al. Effects of β-stabilizer elements on microstructure formation and mechanical properties of titanium alloys [J]. J. Alloys Compd., 2021, 876: 160085
doi: 10.1016/j.jallcom.2021.160085
16 Ohsaka K, Trinh E H, Holzer J C, et al. Gibbs free-energy difference between the undercooling liquid and the beta-phase of a Ti-Cr alloy [J]. Appl. Phys. Lett., 1992, 60(9): 1079
doi: 10.1063/1.106450
17 Zhang R X, Ma Y J, Qi M, et al. The effect of precursory α and ω phase on microstructure evolution and tensile properties of metastable β titanium alloy [J]. J. Mater. Res. Technol., 2022, 16: 912
doi: 10.1016/j.jmrt.2021.12.066
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.