Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 168-174    DOI: 10.11901/1005.3093.2022.053
  研究论文 本期目录 | 过刊浏览 |
液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能
董宇昂1, 阳华杰1(), 贲丹丹1, 马云瑞1,2, 周相海1, 王斌1, 张鹏1, 张哲峰1()
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.国网河南省电力公司电力科学研究院 郑州 450052
Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen
DONG Yu'ang1, YANG Huajie1(), BEN Dandan1, MA Yunrui1,2, ZHOU Xianghai1, WANG Bin1, ZHANG Peng1, ZHANG Zhefeng1()
1.Shi‑changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China
引用本文:

董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
Yu'ang DONG, Huajie YANG, Dandan BEN, Yunrui MA, Xianghai ZHOU, Bin WANG, Peng ZHANG, Zhefeng ZHANG. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. Chinese Journal of Materials Research, 2023, 37(3): 168-174.

全文: PDF(2581 KB)   HTML
摘要: 

在液氮环境用电脉冲(EPT)工艺优化冷轧316L奥氏体不锈钢的微观组织和力学性能,研究了电脉冲处理后样品的室温和低温拉伸性能及其变形机制。结果表明:液氮电脉冲处理后的冷轧316L不锈钢可得到再结晶组织。输入电脉冲的能量不同,其再结晶比例也不同, EPT-7.5LN样品可产生完全再结晶组织。在不同温度下电脉冲处理样品的拉伸实验结果表明,在77 K的拉伸强度-塑性匹配远比在293 K时的高。透射电镜的表征结果表明,样品在293 K的拉伸变形机制以位错和变形孪晶为主,在77 K的拉伸变形时则发生了大量形变诱导马氏体相变。正是大量的马氏体相变及其随后的位错滑移变形使材料的加工硬化能力显著提高,从而使其塑性增强。进一步分析表明,产生变形机制差异的主要原因是,在低温下这种材料的层错能显著降低。

关键词 金属材料316L不锈钢低温拉伸电脉冲变形机制微观组织    
Abstract

The effect of electropulsing treatment (EPT) in liquid nitrogen (LN) on the microstructure and mechanical properties of cold-rolled 316L austenitic stainless steel was assessed, aiming at tensile properties of the EPT-LN treated cold-rolled 316L steel at room and cryogenic temperature, and the relevant deformation mechanisms. It is found that the LN-EPT could induce recrystallization of the cold-rolled 316L stainless steel. The recrystallization ratio is dependent upon the EPT energy input, and after being treated by EPT-7.5LN with discharge voltage of 7.5 kV, the 316 steel presents a fully recrystallized microstructure. The EPT-LN treated steels exhibit significantly higher strength-ductility synergy when they were deformed at 77 K rather than at 293 K. The TEM observation result of the deformed steel revealed that the main mechanisms related with the tensile deformation of 316 steel at 293 K were mainly of dislocation slip and deformation twinning, however, there exist a large amount of deformation-induced martensite transition for that at 77 K. The martensite transitions and their subsequent deformation result in a significant increase in the strain hardening capability, thereby enhancing the strength-ductility synergy. Further analysis shows that the deformation mechanism transition is mainly caused by the significant reduction of stacking fault energy of the steel at low temperatures.

Key wordsmetallic materials    316L stainless steel    cryogenic tensile    electropulsing    deformation mechanism    microstructure
收稿日期: 2022-01-17     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金(51975552);国家自然科学基金(52130002);辽宁省振兴人才计划(XLYC1808027)
通讯作者: 阳华杰,研究员,hjyang@imr.ac.cn,研究方向为金属愈合延寿机制及增材制造技术;
张哲峰,研究员,zhfzhang@imr.ac.cn,研究方向为金属材料力学行为、疲劳与断裂
Corresponding author: YANG Huajie, Tel: (024)23971043, E-mail: hjyang@imr.ac.cn;
ZHANG Zhefeng, Tel: (024)83978779, E-mail: zhfzhang@imr.ac.cn
作者简介: 董宇昂,1995年生,男,硕士
ElementCrNiMoCSiMnSPFe
Content16.5411.222.020.020.361.430.020.03Bal.
表1  实验用316L不锈钢的化学成分
图1  电脉冲处理和在液氮温度下拉伸实验的示意图
图2  拉伸实验用样品的微观组织
图3  液氮电脉冲后试样的晶界照片
图4  EPT-7LN和EPT-7.5LN以及冷轧态样品在不同温度下拉伸的工程应力-应变曲线和加工硬化曲线
YS/MPaUTS/MPaEL/%
Cold-rolled-293 K14637.1
EPT-7LN-293 K54393619.1
EPT-7.5LN-293 K44880838.7
Cold-rolled-77 K1665181637.8
EPT-7LN-77 K1184183655.2
EPT-7.5LN-77 K912161765.5
表2  在不同温度下样品的拉伸力学性能
图5  室温和低温拉伸后的XRD谱
图6  用TEM照片表征试样在拉伸变形后的微观组织特征
1 Bruschi S, Pezzato L, Ghiotti A, et al. Effectiveness of using low-temperature coolants in machining to enhance durability of AISI 316L stainless steel for reusable biomedical devices [J]. J. Manuf. Process., 2019, 39: 295
doi: 10.1016/j.jmapro.2019.02.003
2 Liu H J, Wu Y, Han Q Y, et al. Mechanical tests on the ITER PF 316L jacket after compaction [J]. Cryogenics, 2011, 51(6): 234
doi: 10.1016/j.cryogenics.2010.06.017
3 Xiong Y, Yue Y, Lu Y, et al. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel [J]. Mater. Sci. Eng., 2018, 709A: 270
4 Qiu X Y F, Yang Z Y, Ding Y L. Effect of retained/reversed austenite on improving -196℃ cryogenic impact property of high strength stainless steel [J]. Heat Treat. Met., 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
4 邱旭扬帆, 杨卓越, 丁雅莉. 残留/逆转变奥氏体对改善高强度不锈钢-196℃超低温冲击性能的影响 [J]. 金属热处理, 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
5 Zheng J Y, Wang K, Huang Z, et al. Study on strength of austenitic stainless steel under liquid-nitrogen temperature [J]. Pressure Vessel Technol., 2014, 31(8): 1
5 郑津洋, 王 珂, 黄 泽 等. 液氮温度下奥氏体不锈钢强度试验研究 [J]. 压力容器, 2014, 31(8): 1
6 Xu M Z, Wang J J, Liu C M. Low Temperature deformation behavior of high-nitrogen nickel-free austenitic stainless steels [J]. Acta Metall. Sin., 2011, 47(10): 1335
6 徐明舟, 王建军, 刘春明. 新型无Ni高N奥氏体不锈钢的低温变形行为 [J]. 金属学报, 2011, 47(10): 1335
doi: 10.3724/SP.J.1037.2011.00141
7 Li H P, Xiong Y, Lu Y, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature [J]. Chin. J. Mater. Res., 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
7 李会鹏, 熊 毅, 路 妍 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
8 Fan Y L, Yang H L. Mechanical analysis of crack tip in cold working 316L stainless steel [J]. Hot Work. Technol., 2018, 47(19): 155
8 樊亚玲, 杨宏亮. 冷加工316L不锈钢裂尖力学分析 [J]. 热加工工艺, 2018, 47(19): 155
9 Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, 759A: 90
10 Guan L, Tang G Y, Chu P K, et al. Enhancement of ductility in Mg-3Al-1Zn alloy with tilted basal texture by electropulsing [J]. J. Mater. Res., 2009, 24: 3674
doi: 10.1557/jmr.2009.0436
11 Yuan Y, Liu W, Fu B Q, et al. The effects of electropulsing on the recrystallization behavior of rolled pure tungsten [J]. J. Mater. Res., 2012, 27: 2630
doi: 10.1557/jmr.2012.292
12 Ben D D, Yang H J, Ma Y R, et al. Rapid hardening of AISI 4340 steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 725A: 28
13 Gao J B, Ben D D, Yang H J, et al. Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy [J]. J. Alloys Compd., 2021, 875: 160044
doi: 10.1016/j.jallcom.2021.160044
14 Ben D D, Yang H J, Ma Y R, et al. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment [J]. Adv. Eng. Mater., 2019, 21: 1801345
doi: 10.1002/adem.v21.7
15 Xiao S H, Zhou Y Z, Guo J D, et al. The effect of high current pulsing on persistent slip bands in fatigued copper single crystals [J]. Mater. Sci. Eng., 2002, 332A: 351
16 Yang C L, Yang H J, Zhang Z J, et al. Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing [J]. Scr. Mater, 2018, 147: 88
doi: 10.1016/j.scriptamat.2018.01.008
17 Ma Y R, Yang H J, Tian Y Z, et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 713A: 146
18 Ma Y R, Yang H J, Ben D D, et al. Anisotropic electroplastic effects on the mechanical properties of a nano-lamellar austenitic stainless steel [J]. Acta Metall. Sin., 2021, 34: 534
doi: 10.1007/s40195-020-01130-z
19 Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
doi: 10.1016/j.actamat.2015.08.030
20 Allain S, Bouaziz O, Chateau J P. Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature [J]. Scr. Mater., 2010, 62: 500
doi: 10.1016/j.scriptamat.2009.12.026
21 Jung I C, De Cooman B C. Temperature dependence of the flow stress of Fe-18Mn-0.6C-xAl twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 6724
doi: 10.1016/j.actamat.2013.07.042
22 Molnár D, Sun X, Lu S, et al. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 759A: 490
23 Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, 387-389A: 158
24 Wang C, Lin X, Wang L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, 815A: 141317
25 Shi J T, Hou L G, Zuo J R, et al. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel [J]. Acta Metall. Sin., 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
25 史金涛, 侯陇刚, 左锦荣 等. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J]. 金属学报, 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
26 Crivoi M R, Hoyos J J, Izumi M T, et al. In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation [J]. Cryogenics, 2020, 105: 103020
doi: 10.1016/j.cryogenics.2019.103020
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.