|
|
液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能 |
董宇昂1, 阳华杰1( ), 贲丹丹1, 马云瑞1,2, 周相海1, 王斌1, 张鹏1, 张哲峰1( ) |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.国网河南省电力公司电力科学研究院 郑州 450052 |
|
Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen |
DONG Yu'ang1, YANG Huajie1( ), BEN Dandan1, MA Yunrui1,2, ZHOU Xianghai1, WANG Bin1, ZHANG Peng1, ZHANG Zhefeng1( ) |
1.Shi‑changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China |
引用本文:
董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
Yu'ang DONG,
Huajie YANG,
Dandan BEN,
Yunrui MA,
Xianghai ZHOU,
Bin WANG,
Peng ZHANG,
Zhefeng ZHANG.
Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. Chinese Journal of Materials Research, 2023, 37(3): 168-174.
1 |
Bruschi S, Pezzato L, Ghiotti A, et al. Effectiveness of using low-temperature coolants in machining to enhance durability of AISI 316L stainless steel for reusable biomedical devices [J]. J. Manuf. Process., 2019, 39: 295
doi: 10.1016/j.jmapro.2019.02.003
|
2 |
Liu H J, Wu Y, Han Q Y, et al. Mechanical tests on the ITER PF 316L jacket after compaction [J]. Cryogenics, 2011, 51(6): 234
doi: 10.1016/j.cryogenics.2010.06.017
|
3 |
Xiong Y, Yue Y, Lu Y, et al. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel [J]. Mater. Sci. Eng., 2018, 709A: 270
|
4 |
Qiu X Y F, Yang Z Y, Ding Y L. Effect of retained/reversed austenite on improving -196℃ cryogenic impact property of high strength stainless steel [J]. Heat Treat. Met., 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
|
4 |
邱旭扬帆, 杨卓越, 丁雅莉. 残留/逆转变奥氏体对改善高强度不锈钢-196℃超低温冲击性能的影响 [J]. 金属热处理, 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
|
5 |
Zheng J Y, Wang K, Huang Z, et al. Study on strength of austenitic stainless steel under liquid-nitrogen temperature [J]. Pressure Vessel Technol., 2014, 31(8): 1
|
5 |
郑津洋, 王 珂, 黄 泽 等. 液氮温度下奥氏体不锈钢强度试验研究 [J]. 压力容器, 2014, 31(8): 1
|
6 |
Xu M Z, Wang J J, Liu C M. Low Temperature deformation behavior of high-nitrogen nickel-free austenitic stainless steels [J]. Acta Metall. Sin., 2011, 47(10): 1335
|
6 |
徐明舟, 王建军, 刘春明. 新型无Ni高N奥氏体不锈钢的低温变形行为 [J]. 金属学报, 2011, 47(10): 1335
doi: 10.3724/SP.J.1037.2011.00141
|
7 |
Li H P, Xiong Y, Lu Y, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature [J]. Chin. J. Mater. Res., 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
|
7 |
李会鹏, 熊 毅, 路 妍 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
|
8 |
Fan Y L, Yang H L. Mechanical analysis of crack tip in cold working 316L stainless steel [J]. Hot Work. Technol., 2018, 47(19): 155
|
8 |
樊亚玲, 杨宏亮. 冷加工316L不锈钢裂尖力学分析 [J]. 热加工工艺, 2018, 47(19): 155
|
9 |
Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, 759A: 90
|
10 |
Guan L, Tang G Y, Chu P K, et al. Enhancement of ductility in Mg-3Al-1Zn alloy with tilted basal texture by electropulsing [J]. J. Mater. Res., 2009, 24: 3674
doi: 10.1557/jmr.2009.0436
|
11 |
Yuan Y, Liu W, Fu B Q, et al. The effects of electropulsing on the recrystallization behavior of rolled pure tungsten [J]. J. Mater. Res., 2012, 27: 2630
doi: 10.1557/jmr.2012.292
|
12 |
Ben D D, Yang H J, Ma Y R, et al. Rapid hardening of AISI 4340 steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 725A: 28
|
13 |
Gao J B, Ben D D, Yang H J, et al. Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy [J]. J. Alloys Compd., 2021, 875: 160044
doi: 10.1016/j.jallcom.2021.160044
|
14 |
Ben D D, Yang H J, Ma Y R, et al. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment [J]. Adv. Eng. Mater., 2019, 21: 1801345
doi: 10.1002/adem.v21.7
|
15 |
Xiao S H, Zhou Y Z, Guo J D, et al. The effect of high current pulsing on persistent slip bands in fatigued copper single crystals [J]. Mater. Sci. Eng., 2002, 332A: 351
|
16 |
Yang C L, Yang H J, Zhang Z J, et al. Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing [J]. Scr. Mater, 2018, 147: 88
doi: 10.1016/j.scriptamat.2018.01.008
|
17 |
Ma Y R, Yang H J, Tian Y Z, et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 713A: 146
|
18 |
Ma Y R, Yang H J, Ben D D, et al. Anisotropic electroplastic effects on the mechanical properties of a nano-lamellar austenitic stainless steel [J]. Acta Metall. Sin., 2021, 34: 534
doi: 10.1007/s40195-020-01130-z
|
19 |
Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
doi: 10.1016/j.actamat.2015.08.030
|
20 |
Allain S, Bouaziz O, Chateau J P. Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature [J]. Scr. Mater., 2010, 62: 500
doi: 10.1016/j.scriptamat.2009.12.026
|
21 |
Jung I C, De Cooman B C. Temperature dependence of the flow stress of Fe-18Mn-0.6C-xAl twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 6724
doi: 10.1016/j.actamat.2013.07.042
|
22 |
Molnár D, Sun X, Lu S, et al. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 759A: 490
|
23 |
Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, 387-389A: 158
|
24 |
Wang C, Lin X, Wang L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, 815A: 141317
|
25 |
Shi J T, Hou L G, Zuo J R, et al. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel [J]. Acta Metall. Sin., 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
|
25 |
史金涛, 侯陇刚, 左锦荣 等. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J]. 金属学报, 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
|
26 |
Crivoi M R, Hoyos J J, Izumi M T, et al. In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation [J]. Cryogenics, 2020, 105: 103020
doi: 10.1016/j.cryogenics.2019.103020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|