Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 926-932    DOI: 10.11901/1005.3093.2021.403
  研究论文 本期目录 | 过刊浏览 |
时效早期Al-Mg-Si合金的组织和析出相的演变
郑亚亚1,2(), 罗兵辉2, 柏振海2
1.湖南人文科技学院能源与机电工程学院 娄底 417000
2.中南大学材料科学与工程学院 长沙 410083
Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process
ZHENG Yaya1,2(), LUO Binghui2, BAI Zhenhai2
1.Department of Materials Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
2.School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

郑亚亚, 罗兵辉, 柏振海. 时效早期Al-Mg-Si合金的组织和析出相的演变[J]. 材料研究学报, 2022, 36(12): 926-932.
Yaya ZHENG, Binghui LUO, Zhenhai BAI. Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process[J]. Chinese Journal of Materials Research, 2022, 36(12): 926-932.

全文: PDF(14837 KB)   HTML
摘要: 

用显微硬度测试、差示扫描量热法(DSC)和高分辨透射电镜(HRTEM)观察等手段研究了Al-Mg-Si合金人工时效过程中的硬化、组织变化以及早期析出相的演变。结果表明:在170℃时效的合金具有更高的峰值硬度。在时效初期晶内析出高数量密度的溶质原子团簇和GP区,合金的硬度显著提高。在170℃处理4 h后合金的硬度达到峰值,此时晶内析出相以针状β″相为主,β″相与Al基体界面三维共格应变是合金强化的主要原因。同时,晶界析出相呈断续分布状态。随着时效时间的增加β″相开始粗化,晶界析出相的连续程度降低。在过时效阶段晶内析出相的严重粗化和数量密度的降低,使合金的硬度剧烈降低。在时效的初始阶段,合金的析出序列为过饱和固溶体→球形原子团簇→针状GP区→针状β″相。

关键词 金属材料Al-Mg-Si合金析出行为强化机理    
Abstract

The evolution of hardening, microstructure and precipitate of Al-Mg-Si alloy during early artificial aging process were investigated by means of microhardness tester, differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). The results show that the alloy aged at 170℃ has higher peak hardness. At the early aging stage, the high number of solute clusters and GP regions precipitated within grains, and the hardness of the alloy significantly increased. The hardness of the alloy reaches the peak value after being treated at 170℃ for 4 h, and the acicular β"-phase is the main precipitated phase within grains. The three-dimensional coherent strain at the interface between β"-phase and Al matrix is the main reason for the strengthening of the alloy. At the same time, the precipitated particulates distributed discontinuously along grain boundary. With the increase of aging time, the β"-phase coarsened and the continuity of the precipitated particulates decreased. During the over-aging stage, the hardness of the alloy is greatly reduced due to the severe coarsening and the decrease of number of the precipitates. At the initial stage of aging, the precipitation sequence of the alloy is as follows: supersaturated solid solution → spherical atomic clusters → needle-like GP region → needle-like β"-phase.

Key wordsmetallic materials    Al-Mg-Si alloy    precipitation behavior    strengthening mechanism
收稿日期: 2021-07-14     
ZTFLH:  TG146.2  
基金资助:湖南省教育厅项目(22C0598)
作者简介: 郑亚亚,男,1990年生,博士
Precipitate typeStructureSize/nmMorphologyLattice parameter
ClustersUnresolvedUnknownSphericalUnresolved
GP zonesUnresolved∼5Needle-likeUnresolved
GP zonesMonoclinic-Needle-likeUnresolved
β″Base-centered monoclinic∼4×4×50Needle-likea=1.534 nm, c=0.683 nm, b=0.405 nm, β=106°
β″Monoclinic∼4×4×50Needle-likea=0.650 nm, c=0.760 nm, b=0.405 nm, γ=70°
β″Base-centered monoclinic∼4×4×50Needle-likea=1.516 nm, c=0.674 nm, b=0.405 nm, β=105.3°
表1  Al-Mg-Si合金中已知析出相的基本概述[16~22]
图1  Al-Mg-Si合金在不同温度时效过程中硬度的变化
图2  Al-Mg-Si合金在不同温度时效后的TEM组织
Ageing time/minAgeing temperature/℃Average size/nmNumber density/1023·m-3Volume fraction/%
20140---
170---
2007.2±1.30.82±0.120.98±0.03
601403.8±1.20.77±0.110.44±0.02
17012.3±1.11.79±0.161.25±0.03
20017.2±1.41.52±0.171.48±0.02
30014015.4±1.31.39±0.181.29±0.02
17028.8 ±1.41.59±0.131.69±0.02
20050.8±1.50.83±0.111.41±0.03
50014019.5±1.41.48±0.151.34±0.02
17039.8±1.61.58±0.171.72±0.04
20065.3±1.40.69±0.181.33±0.03
表2  Al-Mg-Si合金经不同热处理后析出相尺寸特征的统计数据
图3  经不同时效处理后Al-Mg-Si合金的DSC曲线
图4  Al-Mg-Si合金时效至不同热处理状态后的HRTEM照片和相应的FFT
图5  β"相的HRTEM照片和相应的FFT与IFFT
1 Zeng Y, Yin Z M, Pan Q L, et al. Present research and developing trends of ultra-high strength aluminum alloys [J]. J. Cent. South Univ., 2002, 33(06): 592
1 曾 渝, 尹志民, 潘青林 等. 超高强铝合金的研究现状及发展趋势 [J]. 中南工业大学学报, 2002, 33(06): 592
2 Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. Chin. J. Nonferrous. Met., 2010, 20(9): 1705
2 刘 兵, 彭超群, 王日初 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20(9): 1705
3 Zhu K, Xiong B Q, Yan H W, et al. Numerical simulation on residual stresses of aluminum alloy thick plates for aircraft applications: A review [J]. Chin. J. Nonferrous. Met., 2020, 30(05): 961
3 祝 楷, 熊柏青, 闫宏伟. 航空铝合金厚板残余应力数值模拟研究现状 [J]. 中国有色金属学报, 2020, 30(05): 961
4 Chen J H, Liu C H. Microstructure evolution of precipitates in AlMgSi(Cu) alloys [J]. Chin. J. Nonferrous. Met., 2011, 21(10): 2352
4 陈江华, 刘春辉. AlMgSi(Cu)合金中纳米析出相的结构演变 [J]. 中国有色金属学报, 2011, 21 (10): 2352
5 Li X L, Chen J H, Liu C H, et al. Effects of T6 and T78 tempers on the microstructures and properties of Al-Mg-Si-Cu alloys [J]. Acta Metall Sin., 2013, 49 (2): 243
doi: 10.3724/SP.J.1037.2012.00509
5 李祥亮, 陈江华, 刘春辉 等. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响 [J]. 金属学报, 2013, 49 (2): 243
6 Jin S, Ngai T, Zhang G, et al. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy [J]. Mater. Sci. Eng. A, 2018, 74(2): 53
7 Wang Z X, Li H, Gu J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys [J]. Chin. J. Nonferrous. Met., 2012, 22(12): 3348
7 王芝秀, 李 海, 顾建华 等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响 [J]. 中国有色金属学报, 2012, 22(12): 3348
8 Lin Li, Zheng Z Q, Li J F, et al. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy [J]. Rare. Metal. Mat. Eng., 2012, 41(6): 1004
8 林 莉, 郑子樵, 李劲风. 时效制度对6156铝合金力学性能及腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41(6): 1004
9 Huis V M A, Chen J H, Zandbergen H W, et al. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution [J]. Acta Mater., 2006, 54(11): 2945
doi: 10.1016/j.actamat.2006.02.034
10 Taylor P, Geuser F D, Lefebvre W. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy [J]. Phil. Mag. Lett., 2014, 86(4): 37
doi: 10.1080/09500830500497058
11 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Mater., 1999, 47(5): 1537
doi: 10.1016/S1359-6454(99)00033-6
12 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46(9): 3283
doi: 10.1016/S1359-6454(97)00493-X
13 Marioara C D, Andersen S, Jansen J J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater, 2003, 51(7): 789
doi: 10.1016/S1359-6454(02)00470-6
14 Tonaster M, Hasting H S, Lefebvere W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J Appl. Phys., 2010, 108(7): 073527
15 Ji S, Yang W, Gao F, et al. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys [J]. Mater. Sci. Eng. A., 2013, 564(1): 130
doi: 10.1016/j.msea.2012.11.095
16 Matusuda K, Ikeno S, Gamada H K, et al. High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6%Mg2Si Alloy [J]. Metall. Mater. Trans. A, 1998, 29(4): 1161
doi: 10.1007/s11661-998-0242-7
17 Fallah V, Langeller B, Ofori N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103(15): 290
doi: 10.1016/j.actamat.2015.09.027
18 Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy [J]. Metall. Mater. Trans. A, 2008, 39(2): 243
doi: 10.1007/s11661-007-9438-5
19 Zhang X M, Tang J F, Deng H Q, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J Alloy Compd., 2016, 660(5): 55
doi: 10.1016/j.jallcom.2015.11.085
20 Messina L, Malerba L, Olsson P. Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys: a kinetic monte carlo study [J]. Nucl. Instrum. Meth. B., 2015, 352(1): 61
doi: 10.1016/j.nimb.2014.12.032
21 Kovacs I, Lendval, Nagy E. The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys [J]. Acta Metall., 1972, 20(7): 975
doi: 10.1016/0001-6160(72)90092-2
22 Li H, Zhao P, Wang Z X. The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy [J]. Corros. Sci., 2016, 107: 113
doi: 10.1016/j.corsci.2016.02.025
23 Zheng Y Y, Luo B H, Bai Z H, et al. Evolution of the initial precipitation and strengthening mechanism of Al-Mg-Si alloys [J]. JOM, 2019, 71(12): 4737
doi: 10.1007/s11837-019-03856-3
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.