Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 945-950    DOI: 10.11901/1005.3093.2021.355
  研究论文 本期目录 | 过刊浏览 |
锰掺杂和氧化铌种子层对铌酸钾钠薄膜电性能的影响
朱海勇1,2(), 张伟3
1.中国科学院上海技术物理研究所 传感技术联合国家重点实验室 上海 200083
2.中国科学院红外成像材料与器件重点实验室 上海 200083
3.南京邮电大学电子与光学工程学院 南京 210023
Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films
ZHU Haiyong1,2(), ZHANG Wei3
1.State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2.Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
3.College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
引用本文:

朱海勇, 张伟. 锰掺杂和氧化铌种子层对铌酸钾钠薄膜电性能的影响[J]. 材料研究学报, 2022, 36(12): 945-950.
Haiyong ZHU, Wei ZHANG. Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films[J]. Chinese Journal of Materials Research, 2022, 36(12): 945-950.

全文: PDF(2492 KB)   HTML
摘要: 

采用溶胶凝胶法制备铌酸钾钠(KNN)系薄膜,根据薄膜的微观形貌结构、电学性能和漏电机制研究了Mn掺杂和种子层对KNN薄膜性能的影响。结果表明:锰掺杂能显著提高薄膜的铁电性能和降低漏电流;在薄膜与衬底之间加入氧化铌种子层,使薄膜的电学性能进一步提高。薄膜的漏电流机制由空间电荷传导和欧姆传导转为欧姆传导和肖特基发射,使漏电流和剩余极化值减小。在强度为600 kV/cm的电场中,有种子层且掺10%(摩尔分数)Mn的KNN薄膜,其最大极化值和剩余极化值分别为20.33 µC/cm2和2.94 µC/cm2

关键词 无机非金属材料储能性能溶胶凝胶法铌酸钾钠薄膜    
Abstract

High-quality films of lead-free piezoelectric xMn-doped KNaNbO3 (x = 0, 0.05, 0.10) were successfully deposited onto Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel method. The effect of Mn doping and seed layer of niobium oxide on the microstructure, dielectric properties, ferroelectric properties, and leakage current of the KNN films was investigated in detail. The results show that Mn doping can significantly improve the ferroelectric properties and reduce the leakage current of the prepared films. After inserted a seed layer of niobium oxide in between the films and the substrate, the leakage current related mechanism of KNN films changes from space charge conduction and ohmic conduction to ohmic conduction and Schottky emission, correspondingly, the leakage current is further reduced. It is found that when the electric field is 600 kV/cm, the maximum polarization value of the 10% mol Mn doped KNN films with a inserted seed layer is 20.33 μC/cm2, and the residual polarization value is 2.94 μC/cm2.

Key wordsinorganic non-metallic materials    energy storage performance    sol-gel    potassium sodium niobate films
收稿日期: 2021-06-15     
ZTFLH:  O484  
作者简介: 朱海勇,男,1992年生,硕士
图1  KNN薄膜的XRD谱
图2  薄膜的SEM形貌
图3  KNN薄膜的介电频谱
图4  KNN、5%Mn-KNN、NbO/5%Mn-KNN、10% Mn-KNN、NbO/10%Mn-KNN薄膜的电滞回线以及薄膜在200 kV/cm电场中的最大极化值和剩余极化值
图5  KNN薄膜的电流密度与电场关系曲线以及KNN、5%Mn-KNN和NbO/5%Mn-KNN薄膜的In(J)与In(E)的关系曲线
1 Sherrill S A, Banerjee P, Rubloff G W, et al. High to ultra-high power electrical energy storage [J]. Phys. Chem. Chem. Phys., 2011, 13(46): 20714
doi: 10.1039/c1cp22659b pmid: 21997843
2 Li Q, Chen L, Gadinski M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature, 2015, 523: (7562) 576
3 Chu B J, Zhou X, Ren K L, et al. A dielectric polymer with high electric energy density and fast discharge speed [J]. Science, 2006, 313(5785): 334
pmid: 16857935
4 Prateek, Thakur V K, Gupta R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116 (7): 4260
doi: 10.1021/acs.chemrev.5b00495 pmid: 27040315
5 Hao Y N, Wang X H, Bi K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films [J]. Nano Energy, 2017, 31: 49
doi: 10.1016/j.nanoen.2016.11.008
6 Dai Z H, Bao Y W, Zhang J J, et al. Photovoltaic properties of ITO/PZT-Ag2O/Pt ferroelectric diodes [J]. Chin. J. Mater. Res., 2013, 27: 544
6 代智华, 鲍育文, 张婧娇 等. ITO/PZT-Ag2O/Pt铁电薄膜的光伏特性 [J]. 材料研究学报, 2013, 27: 544
7 Chu R Q, Xu Z J, Li G R, et al. Synthesis of PZT (52/48) powders by wet-acoustic chemical method [J]. Chin. J. Mater. Res., 2008, 22: 307
7 初瑞清, 徐志军, 李国荣 等. 湿声化学法制备PZT(52/48)压电陶瓷粉体 [J]. 材料研究学报, 2008, 22: 307
8 Yang Z T, Gao F, Du H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties [J]. Nano Energy, 2019, 58: 768
doi: 10.1016/j.nanoen.2019.02.003
9 Won S S, Kawahara M, Kuhn L, et al. BiFeO3-doped (K0.5, Na0.5)(Mn0.005, Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications [J]. Appl. Phys. Lett., 2017, 110: 152901
doi: 10.1063/1.4980113
10 Zhao C, Meng X H, Wang W, et al. Energy storage performance of (K, Na)NbO3 ferroelectric thin films with Mn-Ta and Mn-Ti Co-doping [J]. Ceram. Int., 2019, 45: 13772
doi: 10.1016/j.ceramint.2019.04.073
11 Qu B Y, Du H L, Yang Z T, et al. Large recoverable energy storage density and low sintering temperature in potassium sodium niobate based ceramics for multilayer pulsed power capacitors [J]. J. Am. Ceram. Soc., 2017, 100: 1517
doi: 10.1111/jace.14728
12 Qu B Y, Du H L, Yang Z T, et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering [J]. RSC Adv., 2016, 6: 34381
doi: 10.1039/C6RA01919F
13 Qu B Y, Du H L, Yang Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability [J]. J. Mater. Chem., 2016, 4C: 1795
14 Shao T Q, Du H L, Ma H, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials [J]. J. Mater. Chem., 2017, 5A: 554
15 Zhang X X, Liu J S, Zhu K J, et al. Effects of Mn doping on dielectric and ferroelectric characteristics of lead-free (K, Na, Li)NbO3 thin films grown by chemical solution deposition [J]. J. Mater. Sci. Mater. Electron., 2017, 28: 487
doi: 10.1007/s10854-016-5547-5
16 Zang G Z, Li L B, Yi X J, et al. Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3) x Nb1- x O3 piezoceramics [J]. J. Mater. Sci. Mater. Electron., 2012, 23: 977
doi: 10.1007/s10854-011-0531-6
17 Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films [J]. Ceram. Int., 2012, 38: S287
doi: 10.1016/j.ceramint.2011.04.103
18 Khorrami G H, Zak A K, Kompany A, et al. Optical and structural properties of X-doped (X=Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods [J]. Ceram. Int., 2012, 38: 5683
doi: 10.1016/j.ceramint.2012.04.012
19 Wang Y G, Lau S P, Lee H W, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature [J]. J. Appl. Phys., 2003, 94: 1597
doi: 10.1063/1.1592007
20 Kupec A, Malic B, Tellier J, et al. Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure [J]. J. Amer. Ceram. Soc., 2012, 95: 515
doi: 10.1111/j.1551-2916.2011.04892.x
21 Denis L M, Esteves G, Walker J, et al. Thickness dependent response of domain wall motion in declamped {001} Pb(Zr0.3Ti0.7)O3 thin films [J]. Acta Mater., 2018, 151: 243
doi: 10.1016/j.actamat.2018.03.046
22 Sun Y Z, Guo F, Lu Q S, et al. Improved ferroelectric photovoltaic effect in Mn-doped lead-free K0.5Na0.5NbO3 films [J]. Ceram. Int., 2018, 44: 13994
doi: 10.1016/j.ceramint.2018.04.250
23 Li N. Effects of interfacial seed layer and element doping on the electric properties of alkaline niobate based thin films [D]. Harbin: Harbin Institute of Technology, 2011
23 李 娜. 界面种子层及元素掺杂对铌酸钾钠基薄膜电性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2011
24 Chen J Y, Bai Y L, Nie C H, et al. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films [J]. J. Alloys Compd., 2016, 663: 480
doi: 10.1016/j.jallcom.2015.12.088
25 Zhong Z Y, Ishiwara H. Variation of leakage current mechanisms by ion substitution in BiFeO3 thin films [J]. Appl. Phys. Lett., 2009, 95: 112902
doi: 10.1063/1.3231073
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.