|
|
9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 |
崔志强, 张宁飞, 王婕, 侯清宇( ), 黄贞益( ) |
安徽工业大学冶金工程学院 马鞍山 243002 |
|
High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel |
CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu( ), HUANG Zhenyi( ) |
School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China |
引用本文:
崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
Zhiqiang CUI,
Ningfei ZHANG,
Jie WANG,
Qingyu HOU,
Zhenyi HUANG.
High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. Chinese Journal of Materials Research, 2022, 36(12): 907-918.
1 |
Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68(6): 337
doi: 10.1016/j.scriptamat.2012.11.037
|
2 |
Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14(1): 014205
|
3 |
Rana R. Low-density steels [J]. JOM, 2014, 66(9): 1730
doi: 10.1007/s11837-014-1137-2
|
4 |
Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rev., 2019, 33B(15) : 2572
|
4 |
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33B(15) : 2572
|
5 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
|
6 |
Sun B H, Aydin H, Fazeli F, et al. Microstructure evolution of a medium manganese steel during thermomechanical processing [J]. Metall. Mater. Trans., 2016, 47A(4) : 1782
|
7 |
Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C Steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
doi: 10.1007/s40195-016-0406-1
|
8 |
Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map [J]. Vacuum, 2019, 159: 447
doi: 10.1016/j.vacuum.2018.10.079
|
9 |
Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel [J]. Mater. Des., 2017, 114: 55
doi: 10.1016/j.matdes.2016.10.044
|
10 |
Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. Microstructure evolution and room temperature mechanical properties of a thermomechanically processed ferrite-based low density steel [J]. Mater. Sci. Eng., 2019, 754A: 57
|
11 |
Mozumder Y H, Babu K A, Saha R, et al. Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate [J]. Mater. Sci. Eng., 2021, 823A: 141725
|
12 |
Babu K A, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, 734A: 269
|
13 |
Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A(4) : 982
|
14 |
Rasti J, Najafizadeh A, Meratian M. Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method [J]. Int. J. ISSI, 2011, 8: 26
|
15 |
Mozumder Y H, Babu K A, Saha R, et al. Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel [J]. Mater. Sci. Eng., 2020, 788A: 139613
|
16 |
Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel [J]. Mater. Sci. Eng., 2020, 772A: 138682
|
17 |
Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng., 2017, 689A: 269
|
18 |
Eskandari M, Zarei-Hanzaki A, Kamali A R, et al. Strain hardening during hot compression through planar dislocation and twin-like structure in a low-density high-Mn steel [J]. J. Mater. Eng. Perform., 2014, 23(10): 3567
doi: 10.1007/s11665-014-1168-4
|
19 |
Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
|
20 |
Acselrad O, Simao R A, Pereira L C, et al. Phase transformations in FeMnAlC austenitic steels with Si addition [J]. Metall. Mater. Trans., 2002, 33A(11) : 3569
|
21 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518(7537): 77
doi: 10.1038/nature14144
|
22 |
Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
|
23 |
Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63(10): 1028
doi: 10.1016/j.scriptamat.2010.07.036
|
24 |
Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
doi: 10.1016/j.matdes.2016.09.012
|
25 |
Sang D L, Fu R D, Li Y J, et al. Interactions between twins and dislocations during dynamic microstructure evolution for hot shear-compression deformation of Fe-38Mn austenitic steel [J]. J. Alloys Compd., 2018, 735: 2395
doi: 10.1016/j.jallcom.2017.11.303
|
26 |
Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, 761A: 138044
|
27 |
Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A(6) : 2056
|
28 |
Bartlett L, Van Aken D. High manganese and aluminum steels for the military and transportation industry [J]. JOM, 2014, 66(9): 1770
doi: 10.1007/s11837-014-1068-y
|
29 |
Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development [J]. Mater. Charact., 2015, 107: 293
doi: 10.1016/j.matchar.2015.07.028
|
30 |
Song R B, Li J J, Li X, et al. Hot deformation behavior of Fe-8Mn-3Al-0.2C steel [J]. Mater. Sci. Technol., 2018, 26(1): 81
doi: 10.1179/174328408X388103
|
30 |
宋仁伯, 李佳佳, 李 轩 等. Fe-8Mn-3Al-0.2C轻质高强钢的热变形行为 [J]. 材料科学与工艺, 2018, 26(1): 81
|
31 |
Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling [J]. Mater. Sci. Eng., 2020, 797A: 139925
|
32 |
Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng., 2010, 527A(21-22) : 5467
|
33 |
Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. J. Mater. Process. Technol., 2004, 152: 136
doi: 10.1016/j.jmatprotec.2004.03.029
|
34 |
Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads [J]. Metall. Trans., 1991, 22A: 321
|
35 |
Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
|
35 |
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
|
36 |
Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloys Compd., 2020, 818: 152848
doi: 10.1016/j.jallcom.2019.152848
|
37 |
Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study [J]. Comput. Mater. Sci., 2019, 159: 160
doi: 10.1016/j.commatsci.2018.12.017
|
38 |
Lu W J, Qin R S. Influence of κ-carbide interface structure on the formability of lightweight steels [J]. Mater. Des., 2016, 104: 211
doi: 10.1016/j.matdes.2016.05.021
|
39 |
Zhang X F, Leng D P, Zhang L, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels [J]. Trans. Mater. Heat Treat., 2015, 36(12): 128
|
39 |
章小峰, 冷德平, 张 龙 等. Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响 [J]. 材料热处理学报, 2015, 36(12): 128
|
40 |
Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, 485A(1-2) : 664
|
41 |
Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Mater. Charact., 2017, 132: 437
doi: 10.1016/j.matchar.2017.09.009
|
42 |
Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30%Mn-9wt.%Al-0.9%C alloy [J]. Mater. Sci. Eng., 1989, 111A: 45
|
43 |
Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
|
43 |
章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
|
44 |
He B B, Hu B, Yen H W, et al. High dislocation density–induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357(6355): 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
45 |
Han Y H, Li C S, Ren J Y, et al. Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel [J]. J. Mater. Sci., 2021, 56(14): 8762
doi: 10.1007/s10853-021-05792-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|