Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 907-918    DOI: 10.11901/1005.3093.2021.505
  研究论文 本期目录 | 过刊浏览 |
9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制
崔志强, 张宁飞, 王婕, 侯清宇(), 黄贞益()
安徽工业大学冶金工程学院 马鞍山 243002
High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel
CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu(), HUANG Zhenyi()
School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
引用本文:

崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
Zhiqiang CUI, Ningfei ZHANG, Jie WANG, Qingyu HOU, Zhenyi HUANG. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. Chinese Journal of Materials Research, 2022, 36(12): 907-918.

全文: PDF(6741 KB)   HTML
摘要: 

使用Gleeble热模拟试验机、XRD、OM、SEM和TEM等手段研究了9Mn27Al10Ni3Si低密度钢在850~1050℃和0.01~5 s-1条件下的热压缩变形特征及其机制。结果表明,对这种钢在850~950℃进行低应变速率(0.01~1 s-1)热压缩时,κ-碳化物的析出和粗化以及在热压缩过程中摩擦系数的增大使其应变达到临界值后流变应力明显增大;随着应变速率的提高,实验钢的孪生显著增强,显著加快了奥氏体的动态再结晶过程,使其在高应变速率热压缩时动态再结晶的程度比低应变速率压缩时更为显著。再结晶的软化作用,使上述流变应力异常增大的现象逐渐减弱甚至消失。

关键词 金属材料低密度钢动态再结晶变形机制孪生κ-碳化物    
Abstract

The deformation characteristics of 9Mn27Al10Ni3Si low density steel at 850~1050℃ with strain rate within the range of 0.01~5 s-1 were investigated by using Gleeble thermal simulator, XRD, OM, SEM and TEM. The results show that when the steel is hot compressed at 850~950℃ with low strain rate (0.01~1 s-1), the flow stress of the steel increases obviously as the strain reaches a certain critical value, which may be due to the precipitation and coarsening of κ-carbides, and the increase of friction coefficient of the steel during hot compression. With the increase of strain rate, the number of twins increases significantly, which can speed up the process of dynamic recrystallization of austenite, however, during thermal compression by high strain rate, the dynamic recrystallization process is more significant rather than by low strain rate. Due to the softening effect of recrystallization, the abnormal rise of flow stress gradually weakens or even disappears.

Key wordsmetallic materials    low-density steel    dynamic recrystallization    deformation mechanism    twin    κ-carbides
收稿日期: 2021-09-07     
ZTFLH:  TG111.7  
基金资助:安徽省高等学校自然科学研究项目(KJ2019ZD07)
作者简介: 崔志强,男,1998年生,硕士生
图1  实验钢锻态的显微组织
Phaseγδκ-carbides
Content80.53.715.8
表1  9Mn27Al10Ni3Si奥氏体基低密度钢的室温相组成(原子分数, %)
图2  实验钢的热压缩流变应力曲线
图3  实验钢在0.01 s-1条件下热压缩流变应力曲线的修正
图4  实验钢在850℃不同应变速率条件下热压缩后的显微组织
图5  实验钢在850℃热压缩后的SEM照片
图6  实验钢在0.01 s-1条件下热压缩后的金相组织
图7  实验钢在850℃、1~5 s-1条件下热压缩后的θ-σ和(-dθ/dσ)-σ曲线
图8  实验钢在850℃热压缩后的TEM组织
ElementPoint 1Point 2Point 3Point 4Point 5Point 6
Fe65.11664.41663.05754.59953.36054.067
Mn17.91726.35825.77629.34830.95130.342
Al10.0566.4227.09015.38615.11014.937
Ni5.0181.8842.3880.4570.4920.484
Si1.8910.9181.6870.2080.0860.167
Phaseγγγκ-carbideκ-carbideκ-carbide
表2  图6和图7中TEM图像各点的EDS分析
图9  实验钢在850℃、0.01 s-1 (ε=0.9)条件下热压缩后的TEM组织
Strain rate/s-10.010.115
Average grain size/μm10.289.669.0012.13
Time of hot compression/s90910.3
表3  实验钢在850℃热压缩时奥氏体再结晶晶粒的平均尺寸
图10  实验钢在1050℃、5 s-1 (ε=0.7)条件下热压缩后的TEM组织
图11  第一性原理研究示意图和κ-碳化物对流变应力异常增大的影响
1 Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68(6): 337
doi: 10.1016/j.scriptamat.2012.11.037
2 Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14(1): 014205
3 Rana R. Low-density steels [J]. JOM, 2014, 66(9): 1730
doi: 10.1007/s11837-014-1137-2
4 Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rev., 2019, 33B(15) : 2572
4 刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33B(15) : 2572
5 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
6 Sun B H, Aydin H, Fazeli F, et al. Microstructure evolution of a medium manganese steel during thermomechanical processing [J]. Metall. Mater. Trans., 2016, 47A(4) : 1782
7 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C Steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
doi: 10.1007/s40195-016-0406-1
8 Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map [J]. Vacuum, 2019, 159: 447
doi: 10.1016/j.vacuum.2018.10.079
9 Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous dynamic recrystallization in low density steel [J]. Mater. Des., 2017, 114: 55
doi: 10.1016/j.matdes.2016.10.044
10 Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. Microstructure evolution and room temperature mechanical properties of a thermomechanically processed ferrite-based low density steel [J]. Mater. Sci. Eng., 2019, 754A: 57
11 Mozumder Y H, Babu K A, Saha R, et al. Deformation mechanism and nano-scale interplay of dual precipitation during compressive deformation of a duplex lightweight steel at high strain rate [J]. Mater. Sci. Eng., 2021, 823A: 141725
12 Babu K A, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, 734A: 269
13 Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A(4) : 982
14 Rasti J, Najafizadeh A, Meratian M. Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method [J]. Int. J. ISSI, 2011, 8: 26
15 Mozumder Y H, Babu K A, Saha R, et al. Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel [J]. Mater. Sci. Eng., 2020, 788A: 139613
16 Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a κ-carbide-bearing multiphase Fe-11Mn-10Al-0.9C lightweight steel [J]. Mater. Sci. Eng., 2020, 772A: 138682
17 Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng., 2017, 689A: 269
18 Eskandari M, Zarei-Hanzaki A, Kamali A R, et al. Strain hardening during hot compression through planar dislocation and twin-like structure in a low-density high-Mn steel [J]. J. Mater. Eng. Perform., 2014, 23(10): 3567
doi: 10.1007/s11665-014-1168-4
19 Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
20 Acselrad O, Simao R A, Pereira L C, et al. Phase transformations in FeMnAlC austenitic steels with Si addition [J]. Metall. Mater. Trans., 2002, 33A(11) : 3569
21 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518(7537): 77
doi: 10.1038/nature14144
22 Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
23 Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63(10): 1028
doi: 10.1016/j.scriptamat.2010.07.036
24 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
doi: 10.1016/j.matdes.2016.09.012
25 Sang D L, Fu R D, Li Y J, et al. Interactions between twins and dislocations during dynamic microstructure evolution for hot shear-compression deformation of Fe-38Mn austenitic steel [J]. J. Alloys Compd., 2018, 735: 2395
doi: 10.1016/j.jallcom.2017.11.303
26 Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, 761A: 138044
27 Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A(6) : 2056
28 Bartlett L, Van Aken D. High manganese and aluminum steels for the military and transportation industry [J]. JOM, 2014, 66(9): 1770
doi: 10.1007/s11837-014-1068-y
29 Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development [J]. Mater. Charact., 2015, 107: 293
doi: 10.1016/j.matchar.2015.07.028
30 Song R B, Li J J, Li X, et al. Hot deformation behavior of Fe-8Mn-3Al-0.2C steel [J]. Mater. Sci. Technol., 2018, 26(1): 81
doi: 10.1179/174328408X388103
30 宋仁伯, 李佳佳, 李 轩 等. Fe-8Mn-3Al-0.2C轻质高强钢的热变形行为 [J]. 材料科学与工艺, 2018, 26(1): 81
31 Li C M, Huang L, Zhao M J, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling [J]. Mater. Sci. Eng., 2020, 797A: 139925
32 Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng., 2010, 527A(21-22) : 5467
33 Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. J. Mater. Process. Technol., 2004, 152: 136
doi: 10.1016/j.jmatprotec.2004.03.029
34 Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads [J]. Metall. Trans., 1991, 22A: 321
35 Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
35 章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
36 Li Z Q, Wang J S, Huang H B. Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline [J]. J. Alloys Compd., 2020, 818: 152848
doi: 10.1016/j.jallcom.2019.152848
37 Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study [J]. Comput. Mater. Sci., 2019, 159: 160
doi: 10.1016/j.commatsci.2018.12.017
38 Lu W J, Qin R S. Influence of κ-carbide interface structure on the formability of lightweight steels [J]. Mater. Des., 2016, 104: 211
doi: 10.1016/j.matdes.2016.05.021
39 Zhang X F, Leng D P, Zhang L, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels [J]. Trans. Mater. Heat Treat., 2015, 36(12): 128
39 章小峰, 冷德平, 张 龙 等. Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响 [J]. 材料热处理学报, 2015, 36(12): 128
40 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, 485A(1-2) : 664
41 Najafi S Z, Momeni A, Jafarian H R, et al. Recrystallization, precipitation and flow behavior of D3 tool steel under hot working condition [J]. Mater. Charact., 2017, 132: 437
doi: 10.1016/j.matchar.2017.09.009
42 Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30%Mn-9wt.%Al-0.9%C alloy [J]. Mater. Sci. Eng., 1989, 111A: 45
43 Zhang X F, Yang H, Li J X, et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory [J]. Mater. Rev., 2018, 32B(16) : 2859
43 章小峰, 杨 浩, 李家星 等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型 [J]. 材料导报, 2018, 32B(16) : 2859
44 He B B, Hu B, Yen H W, et al. High dislocation density–induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357(6355): 1029
doi: 10.1126/science.aan0177 pmid: 28839008
45 Han Y H, Li C S, Ren J Y, et al. Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel [J]. J. Mater. Sci., 2021, 56(14): 8762
doi: 10.1007/s10853-021-05792-7
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.