Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 739-746    DOI: 10.11901/1005.3093.2021.243
  研究论文 本期目录 | 过刊浏览 |
应力三轴度对淬火态硼钢氢脆敏感性的影响
张渤涛1,2, 李淑慧1,2(), 李永丰1,2, 韩国丰1,2
1.上海交通大学 机械系统与振动国家重点实验室 上海 200240
2.上海交通大学 上海市复杂薄板结构数字化制造重点实验室 上海 200240
Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS
ZHANG Botao1,2, LI Shuhui1,2(), LI Yongfeng1,2, HAN Guofeng1,2
1.State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

张渤涛, 李淑慧, 李永丰, 韩国丰. 应力三轴度对淬火态硼钢氢脆敏感性的影响[J]. 材料研究学报, 2022, 36(10): 739-746.
Botao ZHANG, Shuhui LI, Yongfeng LI, Guofeng HAN. Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS[J]. Chinese Journal of Materials Research, 2022, 36(10): 739-746.

全文: PDF(11671 KB)   HTML
摘要: 

对硼钢进行电化学充氢和低应变率拉伸,分别画出了纯剪切、单向拉伸及近似平面应变状态下淬火态硼钢充氢前后的应力-应变曲线,并基于等效塑性应变量化了硼钢的氢脆敏感性,研究了应力三轴度对淬火态硼钢的力学性能和氢脆敏感性的影响。用SEM及EBSD表征试样断口的微观组织,根据淬火态硼钢充氢前后断裂模式的变化分析了硼钢在不同应力状态下的氢脆机理。结果表明,淬火态硼钢在剪应力状态下的氢脆机理与拉伸应力状态显著不同,使其氢脆敏感性比拉伸应力状态显著降低。

关键词 金属材料淬火态硼钢氢脆敏感性应力三轴度    
Abstract

The Hydrogen embrittlement (HE) susceptibility of the quenched boron steel B1500HS before and after being electrochemical hydrogen charging by applying different stresses, such as simple shear, uniaxial tensile and analogous plane strain, respectively was investigated via slow strain rate tensile test. Meanwhile, the stress-strain curves for both the H-free and H-charged steels were acquired and then the HE susceptibility of the test steels was calculated based on the equivalent plastic strain to reveal the effects of the stress state on the HE susceptibility of the quenched boron steel. Furthermore, the fracture features of the steels were characterized by SEM and EBSD to analyze the HE mechanism for the different applied stress. The results show that the HE mechanisms of the quenched boron steel by simple shear stress is substantial different to those by tensile stress, which indicated that the HE susceptibility during testing by simple shear stress is much lower than that by tensile stress.

Key wordsmetallic material    quenched boron steel    hydrogen embrittlement    susceptibility    stress triaxiality
收稿日期: 2021-04-15     
ZTFLH:  TG 156.3  
基金资助:国家自然科学基金(52005329);中国博士后科学基金(2020M671120)
作者简介: 张渤涛,男,1979年生,博士生
CMnBSiCrSPFe
0.211.260.0030.350.230.060.00597.88
表1  B1500HS钢的化学成分
图1  硼钢淬火前后的微观组织
图2  淬火态硼钢的XRD衍射谱
图3  单向拉伸试样、带缺口试样和简单剪切试样的尺寸
图4  各拉伸试样对应的应力三轴度
图5  单拉试样、带缺口试样和简单剪切试样充氢前后的应力应变曲线
SampleEquivalent plastic strain
H-freeH-charged
Uniaxial tensile0.2250.018±0.005
Notched0.1670.022±0.002
Simple shear0.3960.203±0.005
表2  代表三种不同应力三轴度的试样在预充氢和未充氢情况下的拉伸极限等效塑性应变
图6  淬火态硼钢在不同应力三轴度下的氢脆敏感性
图7  未充氢和预充氢简单剪切试样断口的形貌
图8  未充氢和预充氢单拉试样断口的形貌
图9  未充氢和预充氢试样断口的形貌
图10  各试样充氢前后断口表面下方的EBSD分析
1 Li H, Zhao G, He L, et al. Research on the constitutive relationship of hot stamping boron steel B1500HS at high temperature [J]. J. Mech. Eng., 2012, 48: 21
1 李辉平, 赵国群, 贺连芳 等. 热冲压硼钢B1500HS高温本构方程的研究 [J]. 机械工程学报, 2012, 48: 21
2 McMahon C. Hydrogen-induced intergranular fracture of steels [J]. Eng. Fract. Mech., 2001, 68: 773
doi: 10.1016/S0013-7944(00)00124-7
3 Lynch S. Hydrogen embrittlement (HE) phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
4 Yoo J, Jo M C, Kim D W, et al. Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels [J]. Acta Mater., 2020, 196: 370
doi: 10.1016/j.actamat.2020.06.051
5 Kumar D S, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
doi: 10.1016/j.ijhydene.2018.09.201
6 Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
doi: 10.2355/isijinternational.50.294
7 Chen Y, Xu Z M, Zhang X X, et al. Irreversible hydrogen embrittlement study of B1500HS high strength boron steel [J]. Mater. Des., 2021, 199:109404
doi: 10.1016/j.matdes.2020.109404
8 Wang M Q, Akiyama E, Tsuzaki K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300MPa strength levels [J]. Scr. Mater., 2005, 52: 403
doi: 10.1016/j.scriptamat.2004.10.023
9 Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
10 Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
doi: 10.1016/0001-6160(70)90078-7
11 Ghosh S, Kain V. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel [J]. Mater. Sci. Eng. A, 2010, 527: 679
doi: 10.1016/j.msea.2009.08.039
12 Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
doi: 10.1016/j.matdes.2011.03.012
13 Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
doi: 10.1016/j.ijhydene.2019.11.070
14 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
14 李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
15 Koyama M, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel [J]. Acta Mater., 2014, 70: 174
doi: 10.1016/j.actamat.2014.01.048
16 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
doi: 10.1016/j.engfracmech.2019.106528
17 Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism [J]. Int. J. Hydrog. Energy, 2018, 43: 3050
doi: 10.1016/j.ijhydene.2017.12.109
18 Pérez Escobar D, Miñambres C, Duprez L, et al. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging [J]. Corrosion Sci., 2011, 53: 3166
doi: 10.1016/j.corsci.2011.05.060
19 Venezuela J, Zhou Q, Liu Q, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels. [J]. Mater. Today Commun., 2018, 17: 1
20 Kan B, Yang Z X, Wang Z J, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
doi: 10.1080/02670836.2017.1325562
21 Wang G, Yan Y, Li J X. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel [J]. Mater. Sci. Eng. A, 2013, 586: 142.
doi: 10.1016/j.msea.2013.07.097
22 Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
23 McLellan R B, Xu Z R. Hydrogen-induced vacancies in the iron lattice [J]. Scr. Mater., 1997, 36: 1201
doi: 10.1016/S1359-6462(97)00015-8
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.