Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 730-738    DOI: 10.11901/1005.3093.2021.357
  研究论文 本期目录 | 过刊浏览 |
铸态退火2024合金在不同温度下的变形行为
杨兵1, 刘春忠1(), 高恩志1, 孙巍2, 刘停1, 张洪宁1, 朱明伟1, 卢天倪1
1.沈阳航空航天大学材料科学与工程学院 沈阳 110136
2.辽宁忠旺集团有限公司 辽阳 111003
Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures
YANG Bing1, LIU Chunzhong1(), GAO Enzhi1, SUN Wei2, LIU Ting1, ZHANG Hongning1, ZHU Mingwei1, LU Tianni1
1.School of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Liaoning Zhongwang Group Co. Ltd., Liaoyang 111003, China
引用本文:

杨兵, 刘春忠, 高恩志, 孙巍, 刘停, 张洪宁, 朱明伟, 卢天倪. 铸态退火2024合金在不同温度下的变形行为[J]. 材料研究学报, 2022, 36(10): 730-738.
Bing YANG, Chunzhong LIU, Enzhi GAO, Wei SUN, Ting LIU, Hongning ZHANG, Mingwei ZHU, Tianni LU. Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures[J]. Chinese Journal of Materials Research, 2022, 36(10): 730-738.

全文: PDF(5854 KB)   HTML
摘要: 

使用MMS-200热力模拟实验机研究了工程用铸态退火2024合金(ϕ247 mm)在不同温度下的变形行为,建立了热变形的本构方程和DMM(Dynamic material model)加工图。分析了铸锭退火态、等温挤压及等温挤压退火实验件的微观组织和力学性能,结果表明:根据DMM加工图确定的热变形温度395~450℃和应变速率0.01~0.1 s-1工艺,可制备出组织明显细化、力学性能优异的大挤压比2024铝合金等温挤压件。

关键词 金属材料2024铝合金应力-应变曲线本构方程DMM加工图等温挤压    
Abstract

Deformation behavior at different temperatures of the cast and annealed 2024 Al-alloy was investigated by means of MMS thermal simulation test machine. The constitutive equation and DMM (Dynamic material model) processing map of the alloy were established. The theoretical support for 2024 Al-alloy extrusion part with an extrusion ratio of 26.9 was provided by the results obtained from DMM map. The microstructures and mechanical properties of the alloys in different situations, namely, the cast plus post annealing, isothermally extruded and isothermally extruded plus post annealing were characterized by OM(Optical microscope), TEM (Transmission electron microscope) and tension tester. The results show that the test articles of 2024 Al-alloy experienced isothermal extrusion with large extrusion ratio can be obtained by strain rate within the range of 0.01~0.1 s-1 at temperatures within 395~450℃, according to the proposed DMM processing map, consequently, the resulted test articles present refined microstructure with excellent mechanical properties.

Key wordsmetallic materials    2024 aluminum alloy    stress-strain curve    constitutive equation    DMM processing map    isothermal extrusion
收稿日期: 2021-06-16     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51405310);辽宁省科技厅重大专项(2019JH1/10100012);辽宁省教育厅一般资助项目(JYT19064)
作者简介: 杨兵,男,1987年生,硕士生
图1  等温挤压结构件的示意图
图2  拉伸试样的示意图
图3  2024铝合金在不同应变速率下的应力-应变曲线
图4  不同变形条件下2024铝合金峰值应力、应变速率和变形温度间的关系
Strain rate/s-1Peak stress/MPa
573 K623 K673 K723 K
0.0194.1472.1350.1637.81
0.1137.58100.5678.3260.19
1158.97119.45100.5780.98
10172.57136.4117.7184.33
表1  不同温度和应变率下的峰值应力
图5  2024铝合金的流变应力与参数Z的关系
图6  2024铝合金的三维功率耗散图
图7  2024铝合金的三维流变失稳图
图8  2024铝合金的DMM加工图
图9  2024铝合金的铸态退火组织
图10  2024铝合金的挤压态组织
图11  2024铝合金铸锭的退火态、挤压态和挤压退火态TEM照片
图12  不同状态2024铝合金的室温应力-应变曲线
图13  2024铝合金不同方向的室温应力-应变曲线
Stateσb / MPaδ / %
As cast annealed(x-axis)193.62±9.31.78±0.34
As extruded(x-axis)362.12±5.44.33±0.14
As extruded(y-axis)319.77±12.62.63±0.34
As extruded(45°-axis)283.46±10.51.59±0.1
As extrusion annealed(x-axis)198.29±3.98.12±1.46
As extrusion annealed(y-axis)194.57±5.16.43±0.16
As extrusion annealed(45°-axis)196.79±7.15.58±1.01
表2  2024铝合金不同状态和方向试样的拉伸性能
图14  2024合金挤压态的EBSD取向图
图15  2024合金挤压态的晶界取向差角分布图
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
1 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
2 Jiang J F, Wang Y, Xiao G F, et al. Influence of modification, refinement and heat treatment on mechanical properties of A356 Al-alloy components prepared by squeeze casting [J]. Chin. J. Mater. Res., 2020, 34: 881
2 姜巨福, 王 迎, 肖冠菲 等. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响 [J]. 材料研究学报, 2020, 34: 881
3 Gong X T, Zhou J, Xu W J, et al. The development of isothermal forging technology for aluminum alloy [J]. China Metalf. Equip. Manufact. Technol., 2009, 44: 23
3 龚小涛, 周 杰, 徐戊娇 等. 铝合金等温锻造技术发展 [J]. 锻压装备与制造技术, 2009, 44: 23
4 Wu D X, Liang Q, Wang J. Hot deformation behavior and constitutive equation of 2024A aluminum alloy [J]. Spec. Cast. Nonferrous Alloy, 2020, 40: 233
4 吴道祥, 梁 强, 王 敬. 2024A铝合金高温流变行为及本构关系研究 [J]. 特种铸造及有色合金, 2020, 40: 233
5 Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. J. Central South Univ., 2019, 26: 2930
doi: 10.1007/s11771-019-4225-1
6 Zhai C H, Feng C H, Chai L H, et al. Rheological deformation behavior of X2A66 aluminum-lithium alloy during isothermal compression [J]. Rare Metal Mater. Eng., 2017, 46: 90
6 翟彩华, 冯朝辉, 柴丽华 等. X2A66铝锂合金等温压缩时的流变变形行为 [J]. 稀有金属材料与工程, 2017, 46: 90
7 Zhong L W, Gao W L, Feng Z H, et al. Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy [J]. J. Mater. Res., 2018, 33: 912
doi: 10.1557/jmr.2017.466
8 He H L, Yi Y P, Cui J D, et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map [J]. Vacuum, 2018, 160: 293
doi: 10.1016/j.vacuum.2018.11.048
9 Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, 542A: 79
10 Ashwath P, Joel J, Kumar H G P, et al. Processing and characterization of extruded 2024 series of aluminum alloy [J]. Mater. Today Proceed., 2018, 5(5): 12479
11 Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys [J]. Chin. J. Mater. Res., 2011, 25: 67
11 李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制 [J]. 材料研究学报, 2011, 25: 67
12 Wu A, Wu Y, Li G J, et al. A high-fit constitutive equation for 2024 aluminum alloy homogenized cast bar [J]. J. Plast. Eng., 2020, 27: 146
12 吴 昂, 吴 莹, 李国俊 等. 一种2024铝合金均匀化铸棒的高拟合度本构方程 [J]. 塑性工程学报, 2020, 27: 146
13 May A, Belouchrani M A, Taharboucht S, et al. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated [J]. Proc. Eng., 2010, 2: 1795
doi: 10.1016/j.proeng.2010.03.193
14 Mirzadeh H. Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1614
doi: 10.1016/S1003-6326(15)63765-7
15 Feng J M, Eliane G, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain [J]. J. Plast. Eng., 2017, 24(6): 151
15 冯建铭, Eliane G, 曹旭东 等. 考虑应变补偿的Al2024合金本构方程研究 [J]. 塑性工程学报, 2017, 24(6): 151
16 Chen L, Zhao G Q, Gong J, et al. Hot deformation behaviors and processing maps of 2024 Aluminum alloy in as-cast and homogenized states [J]. J. Mater. Eng. Perf., 2015, 24: 5002
doi: 10.1007/s11665-015-1734-4
17 Li L, Li H Z, Liang X P, et al. Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution [J]. J. Central South Univ., 2015, 22: 815
doi: 10.1007/s11771-015-2587-6
18 Sun J W, Zhang R W, Li S Y, et al. Research on the thermal denaturation of 5182 aluminium alloy [J]. Nonferrous Metals Sci. Eng., 2018, 9(5): 43
18 孙军伟, 张荣伟, 李升燕 等. 5182铝合金热变形行为研究 [J]. 有色金属科学与工程, 2018, 9(5): 43
19 Dai Q S, Liu X, Fu P, et al. High-temperature deformation behavior and processing map of 5083 aluminum alloy [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1988
19 戴青松, 刘 栩, 付 平 等. 5083铝合金高温变形行为及加工图 [J]. 中南大学学报(自然科学版), 2017, 48: 1988
20 Cui Z Q, Qin Y C. Metallurgy and Heat Treatment 2nd ed. [M]. Beijing: China Machine Press, 2011
20 崔忠圻, 覃耀春. 金属学与热处理. 第2版 [M]. 北京: 机械工业出版社, 2011
21 Lin Y C, Xia Y C, Chen X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate [J]. Comput. Mater. Sci., 2010, 50: 227
doi: 10.1016/j.commatsci.2010.08.003
22 Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Mater. Sci. Eng., 2009, 500A: 114
23 Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
doi: 10.1016/1359-6454(95)00151-0
24 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
25 Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy [J]. Mater. Rev., 2019, 33: 2047
25 陈 龙, 司家勇, 刘松浩 等. 挤压态FGH4096合金的热变形行为及热加工图 [J]. 材料导报, 2019, 33: 2047
26 Yang Y T, Luo R, Cheng X N, et al. High temperature plastic deformation behavior and hot workability of an Alumina-forming Austenitic heat-resisting alloy [J]. Chin. J. Mater. Res., 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
26 杨雨童, 罗 锐, 程晓农 等. 新型含铝奥氏体耐热合金的高温塑性变形行为和热加工性能 [J]. 材料研究学报, 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
27 Cepeda-Jiménez C M, Ruano O A, Carsí M, et al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization [J]. Mater. Sci. Eng., 2012, 552A: 530
28 Chen Y Q, Song W W, Pan S P, et al. Effects of coarse S phase on hot deformation behaviors and microstructure evolutions of 2E12 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 2267
28 陈宇强, 宋文炜, 潘素平 等. 粗大S相对2E12铝合金热变形行为及组织演变的影响 [J]. 中国有色金属学报, 2016, 26: 2267
29 Huang Q X, Wang J L, Liu Z H, et al. Effect of annealing temperature on mechanical properties and microstructure of ECAP-extruded 7005 aluminum alloy [J]. Mater. Rev., 2013, 27(22): 101
29 黄启祥, 王军丽, 刘兆华 等. 退火温度对ECAP变形后7005铝合金组织性能的影响 [J]. 材料导报, 2013, 27(22): 101
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.