Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 873-880    DOI: 10.11901/1005.3093.2020.582
  研究论文 本期目录 | 过刊浏览 |
Ti-Zr-Cu合金的抗菌性能和体外生物相容性
于佳莹1,2,4, 杨希祥1,2,4, 战德松1,2,4(), 杨柯3, 任玲3, 王敬人1,2,4, 徐嘉蔚1,2,4
1.中国医科大学附属口腔医学院材料教研室 沈阳 110002
2.辽宁省口腔医院研究所 沈阳 110002
3.中国科学院金属研究所 沈阳 110819
4.辽宁省口腔疾病重点实验室 沈阳 110002
Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy
YU Jiaying1,2,4, YANG Xixiang1,2,4, ZHAN Desong1,2,4(), YANG Ke3, REN Ling3, WANG Jingren1,2,4, XU Jiawei1,2,4
1.Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2.Liaoning Institute of Dental Research, Shenyang 110002, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
引用本文:

于佳莹, 杨希祥, 战德松, 杨柯, 任玲, 王敬人, 徐嘉蔚. Ti-Zr-Cu合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2021, 35(11): 873-880.
Jiaying YU, Xixiang YANG, Desong ZHAN, Ke YANG, Ling REN, Jingren WANG, Jiawei XU. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. Chinese Journal of Materials Research, 2021, 35(11): 873-880.

全文: PDF(13136 KB)   HTML
摘要: 

采用平板共培养法测定Ti-Zr-Cu合金表面的菌落数,通过CCK8细胞增殖检测、鬼笔环肽细胞染色观察细胞核和细胞骨架形貌、细胞凋亡和黏附能力测定,研究了Ti-Zr-Cu合金的抗菌性能和体外生物相容性。结果表明,空白样品和Ti-Zr合金表面上的菌落密集,而Ti-Zr-Cu合金表面上的菌落数极少。Ti-Zr-Cu合金对金黄色葡萄球菌和大肠杆菌的抗菌率分别达到98.28%和97.67%,表现出优异的抗菌性能。MC3T3-E1在Ti-Zr-Cu合金表面培养1、4、7 d的相对增值率分别为168.8%、109.8%和106.5%,均高于100%,表明这种合金没有细胞毒性。细胞在Ti-Zr-Cu合金表面上的附着和铺展良好,有利于贴壁细胞在其表面黏附和进一步增值,表明Ti-Zr-Cu合金具有良好的生物相容性。Ti-Zr-Cu合金对细胞凋亡没有不良影响。从Ti-Zr-Cu合金表面细胞的SEM照片可见细胞的粘附正常,也表明其具有良好的生物相容性。

关键词 金属材料Ti-Zr-Cu合金抗菌性能生物相容性    
Abstract

The antibacterial property and in vitro biocompatibility of a novel Ti-Zr-Cu alloy were investigated. Meanwhile, the number of bacterial colonies on the surface of Ti-Zr-Cu alloy was determined by plate co-culture method, and the morphology of nuclear and cytoskeleton, cell apoptosis and adhesion ability on Ti-Zr-Cu alloy were assessed by means of CCK8 cell proliferation detection and phyllopeptide cell staining observation. The results show that the density of bacterial colonies on the blank sample and Ti-Zr alloy surface was very high, while the number of bacterial colonies on the Ti-Zr-Cu alloy surface was very low. The antibacterial rate of Ti-Zr-Cu alloy against Staphylococcus aureus and Escherichia coli reached 98.28% and 97.67%, respectively, showing excellent antibacterial properties. The relative productivity of MC3T3-E1 cultured on Ti-Zr-Cu alloy surface for 1, 4 and 7 days were 168.8%, 109.8% and 106.5%, respectively, which were all higher than 100%, indicating that this alloy had no cytotoxicity. The adhesion and spread of cells on the surface of Ti-Zr-Cu alloy are good, which is conducive to the adhesion and further growth of adherent cells on the surface of Ti-Zr-Cu alloy, indicating that Ti-Zr-Cu alloy has good biocompatibility. Ti-Zr-Cu alloy had no adverse effect on cell apoptosis. The SEM images of the cells on the surface of Ti-Zr-Cu alloy showed that the adhesion of the cells was normal, which also indicated that the cells had good biocompatibility.

Key wordsmetal material    Ti-Zr-Cu alloy    antibacterial property    biocompatibility
收稿日期: 2021-01-05     
ZTFLH:  R318  
基金资助:国家自然科学基金(51631009);辽宁省科技计划(ZF2019032);沈阳市科技创新研发计划(19-112-4-028)
作者简介: 于佳莹,女,1995年生,硕士生
AlloyTiZrCuFeCONH
Ti-ZrBal.15.200.010.040.050.070.0040.002
Ti-Zr-CuBal.14.503.000.040.040.080.0070.002
表1  Ti-Zr合金和Ti-Zr-Cu合金的化学成分
LevelRGR/%Evaluation results
0≥100Qualified
175~99Qualified
250~74Overview
325~49Failed
40~24Failed
表2  细胞毒性的分级标准和评定结果
图1  金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)分别与Ti-Zr合金和Ti-Zr-Cu合金共培养24 h后存活细菌菌落的照片
GroupS. aureusE. coli
Colony meanSterilizing rateColony meanSterilizing rate
Ti-Zr-Cu5±4.99(98.28±1.58)%21±4.69(97.67±0.49)%
Ti-Zr294±16.44900±12.96
blank325±18.521087±43.60
表3  不同材料对金黄色葡萄球菌和大肠杆菌的杀菌率(n=4)
图2  CCK8细胞增值检测给出的MC3T3-E1细胞的 OD值(在450 nm处的吸光度)
图3  MC3T3-E1细胞在Ti-Zr合金(a)和Ti-Zr-Cu合金(b)表面培养24 h后的罗丹明鬼笔环肽骨架染色
图4  MC3T3-E1 细胞在Ti-Zr合金和Ti-Zr-Cu合金表面培养72 h后的流式散点图和柱状图统计分析
图5  MC3T3-E1细胞在Ti-Zr合金和Ti-Zr-Cu合金表面培养72 h后的扫描电镜照片
1 Milinkovic I, Cordaro L. Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review [J]. Int J Oral Maxillofac Surg, 2014, 43(5): 606
2 Lee J S, Kim H M, Kim C S, et al. Long-term retrospective study of narrow implants for fixed dental prostheses [J]. Clin Oral Implants Res, 2013, 24(8): 847
3 Badran Z, Struillou X, Strube N, et al. Clinical performance of narrow-diameter titanium-zirconium implants: a systematic review [J]. Implant Dent, 2017, 26(2): 316
4 Thoma D S, Jones A A, Dard M, et al. Tissue integration of a new titanium-zirconium dental implant: a comparative histologic and radiographic study in the canine [J]. J Periodontol, 2011, 82(10): 1453
5 Zhang Y M, Chai F, Hornez J C, et al. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts [J]. Biomed Mater, 2009, 4(1): 015004
6 Ikarashi Y, Toyoda K, Kobayashi E, et al. Improved biocompatibility of titanium-zirconium (Ti-Zr) alloy: Tissue reaction and sensitization to Ti-Zr alloy compared with pure Ti and Zr in rat implantation study [J]. Mater Trans, 2005, 46(10): 2260
7 Ahn D H, Kim H J, Joo J Y, et al. Prevalence and risk factors of peri-implant mucositis and peri-implantitis after at least 7 years of loading [J]. J Periodontal Implant Sci, 2019, 49(6): 397
8 Spriano S, Bosetti M, Bronzoni M, et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments [J]. Biomaterials, 2005, 26(11): 1219
9 Unosson E, Tsekoura E K, Engqvist H, et al. Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system [J]. Biomatter, 2013, 3(4): e26727
10 Unosson E, Morgenstern M, Engqvist H, et al. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films [J]. J Mater Sci Mater Med, 2016, 27(3): 49
11 Bai B, Zhang E, Dong H, et al. Biocompatibility of antibacterial Ti-Cu sintered alloy: in vivo bone response [J]. J Mater Sci Mater Med, 2015, 26(12): 265
12 Zhang E, Li F, Wang H, et al. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 4280
13 Fowler L, Janson O, Engqvist H, et al. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test [J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 707
14 Codita I, Caplan D M, Dragulescu E C, et al. Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species [J]. Roum Arch Microbiol Immunol, 2010, 69(4): 204
15 Russell A D, Hugo W B. Antimicrobial activity and action of silver [J]. Prog Med Chem, 1994, 31: 351
16 Michels H T, Noyce J O, Keevil C W. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper [J]. Lett Appl Microbiol, 2009, 49(2): 191
17 Ma K, Wang M Y, Li Y, et al. Effect of different concentration of titanium-copper alloys on the differentiation of MC3T3-E1 cells [J]. Chin. J. Pract. Stomatol., 2018, 11(06): 354
17 马凯, 王敏雅, 李悦等. 不同质量分数的钛-铜合金对MC3T3-E1细胞分化的影响研究[J]. 中国实用口腔科杂志, 2018, 11(06): 354
18 Yin Z, Ren Y, Zhan D. Effects of copper content on the antibacterial performance and corrosion [J]. West Chin. J. Stomatol, 2018, 36(02): 178
18 印准, 任伊宾, 战德松. 铜含量对钴铬钼铜合金抗菌性和耐腐蚀性的影响 [J]. 华西口腔医学杂志, 2018, 36(02): 178
19 Velasco-ortega E, Jos A, Camean A M, et al. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology [J]. Mutat Res, 2010, 702(1): 17
20 Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys [J]. Dent Mater, 2006, 22(7): 641
21 Ballo M K, Rtimi S, Mancini S, et al. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens [J]. Appl Microbiol Biotechnol, 2016, 100(13): 5945
22 Scheiber I F, Mercer J F, Dringen R. Metabolism and functions of copper in brain [J]. Prog Neurobiol, 2014, 116: 33
23 Sudha V B, Singh K O, Prasad S R, et al. Killing of enteric bacteria in drinking water by a copper device for use in the home: laboratory evidence [J]. Trans R Soc Trop Med Hyg, 2009, 103(8): 819
24 Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface [J]. Appl Environ Microbiol, 2011, 77(5): 1541
25 Mathews S, Hans M, Mucklich F, et al. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions [J]. Appl Environ Microbiol, 2013, 79(8): 2605
26 Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus [J]. Adv Healthc Mater, 2016, 5(5): 557
27 Zhang E, Zheng L, Liu J, et al. Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys [J]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 148
28 Liu R, Ma Z, Kunle Kolawole S, et al. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy [J]. J Mater Sci Mater Med, 2019, 30(7): 75
29 Zhuang Y, Zhang S, Yang K, et al. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection [J]. J Biomed Mater Res B Appl Biomater, 2020, 108(2): 484
30 Wang L, Ren L, Tang T, et al. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-kappaB and Caspase 3 [J]. Int J Nanomedicine, 2015, 10: 6725
31 Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis [J]. Sci Rep, 2016, 6: 29985
32 Jones A A, Disilvestro R A, Coleman M, et al. Copper supplementation of adult men: effects on blood copper enzyme activities and indicators of cardiovascular disease risk [J]. Metabolism, 1997, 46(12): 1380
33 Sun J, Xue M, Jinjing H Y, et al. Cytotoxicity of dental metal material composition [J]. Chi J. Biomater Eng, 1997(2): 59-64, 99
33 孙皎, 薛淼, 今井弘一等. 牙科金属材料的组成对细胞毒性影响的研究 [J]. 中国生物医学工程学报, 1997, 59-64, 99
34 Kolawole S K, Hai W, Zhang S, et al. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application [J]. J Biomed Mater Sci & Tech, 2020, 50: 31
35 Li G, Liu S, Zhan D, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(2): 117
35 李改明, 刘思雨, 战德松等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报,2019, 33(2): 117
36 Li C, Fu S, Liu H, et al. Research Advances on Apoptosisa [J]. World Sci-Tech R&D, 2007, (03): 45
36 李超, 伏圣博, 刘华玲, 马欣荣. 细胞凋亡研究进展 [J]. 世界科技研究与发展, 2007, (03): 45
37 Portt L, Norman G, Clapp C, et al. Anti-apoptosis and cell survival: a review [J]. Biochim Biophys Acta, 2011, 1813(1): 238
38 Xiong S, Mu T, Wang G, et al. Mitochondria-mediated apoptosis in mammals [J]. Protein Cell, 2014, 5(10): 737
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.